Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreP[nu,mu,3,z] > Series representations > Generalized power series > Expansions at z==-1





http://functions.wolfram.com/07.09.06.0023.01









  


  










Input Form





LegendreP[\[Nu], 0, 3, z] == (Sin[Pi \[Nu]]/Pi) Log[(z + 1)/2] Hypergeometric2F1[-\[Nu], 1 + \[Nu], 1, (z + 1)/2] - (Sin[Pi \[Nu]]/Pi) Sum[((Pochhammer[-\[Nu], k] Pochhammer[1 + \[Nu], k])/ k!^2) (2 PolyGamma[k + 1] - PolyGamma[k - \[Nu]] - PolyGamma[\[Nu] + k + 1]) ((z + 1)/2)^k, {k, 0, Infinity}] /; Abs[(z + 1)/2] < 1 && !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "0", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "\[Pi]"], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", "1", ",", FractionBox[RowBox[List["z", "+", "1"]], "2"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "\[Pi]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]], " "]]]], SuperscriptBox[RowBox[List["k", "!"]], "2"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", "+", "k", "+", "1"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]]]]]]]]]], " ", "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> &#120083; </mi> <mi> &#957; </mi> <mn> 0 </mn> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mn> 1 </mn> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox[&quot;1&quot;, Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;\[Nu]&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> &#120083; </ms> <ms> &#957; </ms> <ms> 0 </ms> </apply> <ms> ( </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#960; </ms> <ms> &#957; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#960; </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms> &#62387; </ms> </apply> <apply> <ci> FormBox </ci> <ms> 2 </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <apply> <ci> FormBox </ci> <ms> 1 </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#960; </ms> <ms> &#957; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#960; </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> &#8734; </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <ci> Pochhammer </ci> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> &#957; </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> &#957; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> <ms> 2 </ms> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> &#62980; </ms> </list> </apply> <ms> &lt; </ms> <ms> 1 </ms> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> &#8713; </ms> <apply> <ci> TagBox </ci> <ms> &#8484; </ms> <apply> <ci> Function </ci> <integers /> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "0", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", "1", ",", FractionBox[RowBox[List["z", "+", "1"]], "2"]]], "]"]]]], "\[Pi]"], "-", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", "+", "k", "+", "1"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"]]]]]], "\[Pi]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.