Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SixJSymbol






Mathematica Notation

Traditional Notation









Hypergeometric Functions > SixJSymbol[{j1,j2,j3},{j4,j5,j6}] > Representations through more general functions > Through hypergeometric functions > Involving pF~q





http://functions.wolfram.com/07.40.26.0001.01









  


  










Input Form





SixJSymbol[{Subscript[j, 1], Subscript[j, 2], Subscript[j, 3]}, {Subscript[j, 4], Subscript[j, 5], Subscript[j, 6]}] == (-1)^(e - 1) Pi Csc[e Pi] \[CapitalPhi][f - a, f - b, f - c, f - d, g - a, g - b, g - c, g - d] (HypergeometricPFQRegularized[{a, b, c, d}, {e, f, g}, 1]/\[CapitalPhi][1 - a, 1 - b, 1 - c, 1 - d, 1 + a - e, 1 + b - e, 1 + c - e, 1 + d - e]) /; a + b + c + d - e - f - g == -1 && \[CapitalPhi][Subscript[z, 1], Subscript[z, 2], Subscript[z, 3], Subscript[z, 4], Subscript[z, 5], Subscript[z, 6], Subscript[z, 7], Subscript[z, 8]] == Product[Sqrt[Gamma[Subscript[z, k]]], {k, 1, 8}] && a == -Subscript[j, 1] - Subscript[j, 2] + Subscript[j, 3] && b == Subscript[j, 3] - Subscript[j, 4] - Subscript[j, 5] && c == -Subscript[j, 2] - Subscript[j, 4] + Subscript[j, 6] && d == -Subscript[j, 1] - Subscript[j, 5] + Subscript[j, 6] && e == -1 - Subscript[j, 1] - Subscript[j, 2] - Subscript[j, 4] - Subscript[j, 5] && f == 1 - Subscript[j, 1] + Subscript[j, 3] - Subscript[j, 4] + Subscript[j, 6] && g == 1 - Subscript[j, 2] + Subscript[j, 3] - Subscript[j, 5] + Subscript[j, 6]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["e", "-", "1"]]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["e", " ", "\[Pi]"]], "]"]], " ", RowBox[List["\[CapitalPhi]", "[", RowBox[List[RowBox[List["f", "-", "a"]], ",", RowBox[List["f", "-", "b"]], ",", RowBox[List["f", "-", "c"]], ",", RowBox[List["f", "-", "d"]], ",", RowBox[List["g", "-", "a"]], ",", RowBox[List["g", "-", "b"]], ",", RowBox[List["g", "-", "c"]], ",", RowBox[List["g", "-", "d"]]]], "]"]], " ", RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", "c", ",", "d"]], "}"]], ",", RowBox[List["{", RowBox[List["e", ",", "f", ",", "g"]], "}"]], ",", "1"]], "]"]], "/", " ", RowBox[List["\[CapitalPhi]", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["1", "-", "b"]], ",", RowBox[List["1", "-", "c"]], ",", RowBox[List["1", "-", "d"]], ",", RowBox[List["1", "+", "a", "-", "e"]], ",", RowBox[List["1", "+", "b", "-", "e"]], ",", RowBox[List["1", "+", "c", "-", "e"]], ",", RowBox[List["1", "+", "d", "-", "e"]]]], "]"]]]]]]]], " ", "/;", RowBox[List[RowBox[List[RowBox[List["a", "+", "b", "+", "c", "+", "d", "-", "e", "-", "f", "-", "g"]], "\[Equal]", RowBox[List["-", "1"]]]], "\[And]", RowBox[List[RowBox[List["\[CapitalPhi]", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", SubscriptBox["z", "3"], ",", SubscriptBox["z", "4"], ",", SubscriptBox["z", "5"], ",", SubscriptBox["z", "6"], ",", SubscriptBox["z", "7"], ",", SubscriptBox["z", "8"]]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "8"], SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["z", "k"], "]"]]]]]]], "\[And]", RowBox[List["a", "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]]], "\[And]", RowBox[List["b", "\[Equal]", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]]], "\[And]", RowBox[List["c", "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "6"]]]]], "\[And]", RowBox[List["d", "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "5"], "+", SubscriptBox["j", "6"]]]]], "\[And]", RowBox[List["e", "\[Equal]", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "-", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]]], "\[And]", RowBox[List["f", "\[Equal]", RowBox[List["1", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "6"]]]]], "\[And]", RowBox[List["g", "\[Equal]", RowBox[List["1", "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "5"], "+", SubscriptBox["j", "6"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> e </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> csc </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#934; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> f </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mi> f </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mi> f </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mi> f </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#934; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> d </mi> </mrow> <mo> ; </mo> <mrow> <mi> e </mi> <mo> , </mo> <mi> f </mi> <mo> , </mo> <mi> g </mi> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;c&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;d&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;e&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;f&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;g&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mi> g </mi> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 4 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 5 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 6 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 7 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 8 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </munderover> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msub> <mi> z </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> a </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> b </mi> <mo> &#10869; </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> c </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> d </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> e </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> f </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> g </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <semantics> <mo> { </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;{&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> <mtext> &#8287; </mtext> <mtable> <mtr> <mtd> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> j </mi> <mn> 4 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mtd> <mtd> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mtd> </mtr> </mtable> <mtext> &#8287; </mtext> <semantics> <mo> } </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[&quot;}&quot;, Rule[SpanMaxSize, DirectedInfinity[1]]], SixJSymbol] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> e </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> csc </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#934; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> f </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mi> f </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mi> f </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mi> f </mi> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mi> g </mi> <mo> - </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#934; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> c </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> d </mi> </mrow> <mo> ; </mo> <mrow> <mi> e </mi> <mo> , </mo> <mi> f </mi> <mo> , </mo> <mi> g </mi> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;c&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;d&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;e&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;f&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;g&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> e </mi> <mo> - </mo> <mi> f </mi> <mo> - </mo> <mi> g </mi> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 3 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 4 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 5 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 6 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 7 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 8 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </munderover> <msqrt> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msub> <mi> z </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> a </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> b </mi> <mo> &#10869; </mo> <mrow> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> c </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> d </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> e </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> f </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 4 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> g </mi> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 5 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 6 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SixJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["j", "2"], ",", SubscriptBox["j", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "4"], ",", SubscriptBox["j", "5"], ",", SubscriptBox["j", "6"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["e", "-", "1"]]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["e", " ", "\[Pi]"]], "]"]], " ", RowBox[List["\[CapitalPhi]", "[", RowBox[List[RowBox[List["f", "-", "a"]], ",", RowBox[List["f", "-", "b"]], ",", RowBox[List["f", "-", "c"]], ",", RowBox[List["f", "-", "d"]], ",", RowBox[List["g", "-", "a"]], ",", RowBox[List["g", "-", "b"]], ",", RowBox[List["g", "-", "c"]], ",", RowBox[List["g", "-", "d"]]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", "c", ",", "d"]], "}"]], ",", RowBox[List["{", RowBox[List["e", ",", "f", ",", "g"]], "}"]], ",", "1"]], "]"]]]], RowBox[List["\[CapitalPhi]", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["1", "-", "b"]], ",", RowBox[List["1", "-", "c"]], ",", RowBox[List["1", "-", "d"]], ",", RowBox[List["1", "+", "a", "-", "e"]], ",", RowBox[List["1", "+", "b", "-", "e"]], ",", RowBox[List["1", "+", "c", "-", "e"]], ",", RowBox[List["1", "+", "d", "-", "e"]]]], "]"]]], "/;", RowBox[List[RowBox[List[RowBox[List["a", "+", "b", "+", "c", "+", "d", "-", "e", "-", "f", "-", "g"]], "\[Equal]", RowBox[List["-", "1"]]]], "&&", RowBox[List[RowBox[List["\[CapitalPhi]", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", SubscriptBox["z", "3"], ",", SubscriptBox["z", "4"], ",", SubscriptBox["z", "5"], ",", SubscriptBox["z", "6"], ",", SubscriptBox["z", "7"], ",", SubscriptBox["z", "8"]]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "8"], SqrtBox[RowBox[List["Gamma", "[", SubscriptBox["z", "k"], "]"]]]]]]], "&&", RowBox[List["a", "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"]]]]], "&&", RowBox[List["b", "\[Equal]", RowBox[List[SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]]], "&&", RowBox[List["c", "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "6"]]]]], "&&", RowBox[List["d", "\[Equal]", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "-", SubscriptBox["j", "5"], "+", SubscriptBox["j", "6"]]]]], "&&", RowBox[List["e", "\[Equal]", RowBox[List[RowBox[List["-", "1"]], "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "-", SubscriptBox["j", "4"], "-", SubscriptBox["j", "5"]]]]], "&&", RowBox[List["f", "\[Equal]", RowBox[List["1", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "4"], "+", SubscriptBox["j", "6"]]]]], "&&", RowBox[List["g", "\[Equal]", RowBox[List["1", "-", SubscriptBox["j", "2"], "+", SubscriptBox["j", "3"], "-", SubscriptBox["j", "5"], "+", SubscriptBox["j", "6"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.