Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Quotient






Mathematica Notation

Traditional Notation









Integer Functions > Quotient[m,n] > Integration > Definite integration > For the direct function with respect to m





http://functions.wolfram.com/04.07.21.0009.01









  


  










Input Form





Integrate[t^(\[Alpha] - 1) Quotient[t, n], {t, a, Infinity}] == -((a^\[Alpha] Quotient[a, n] + n^\[Alpha] Zeta[-\[Alpha], 1 + Quotient[a, n]])/\[Alpha]) /; Re[\[Alpha]] < -1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "a", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["Quotient", "[", RowBox[List["t", ",", "n"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["a", "\[Alpha]"], " ", RowBox[List["Quotient", "[", RowBox[List["a", ",", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["n", "\[Alpha]"], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", RowBox[List["1", "+", RowBox[List["Quotient", "[", RowBox[List["a", ",", "n"]], "]"]]]]]], "]"]]]]]], "\[Alpha]"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", RowBox[List["-", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mi> a </mi> <mi> &#8734; </mi> </msubsup> <mrow> <msup> <mi> t </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> quotient </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> t </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mrow> <mi> quotient </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> n </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> quotient </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;\[Alpha]&quot;]], Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;quotient&quot;, &quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;,&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;+&quot;, &quot;1&quot;]], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`x, $CellContext`y], Zeta[$CellContext`x, $CellContext`y]]]] </annotation> </semantics> </mrow> </mrow> <mi> &#945; </mi> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <ci> a </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> quotient </ci> <ci> t </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> quotient </ci> <ci> a </ci> <ci> n </ci> </apply> <apply> <power /> <ci> a </ci> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> n </ci> <ci> &#945; </ci> </apply> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <plus /> <apply> <ci> quotient </ci> <ci> a </ci> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <real /> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "a_", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Quotient", "[", RowBox[List["t_", ",", "n_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["a", "\[Alpha]"], " ", RowBox[List["Quotient", "[", RowBox[List["a", ",", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["n", "\[Alpha]"], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", RowBox[List["1", "+", RowBox[List["Quotient", "[", RowBox[List["a", ",", "n"]], "]"]]]]]], "]"]]]]]], "\[Alpha]"]]], "/;", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", RowBox[List["-", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.