Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











MathieuCPrime






Mathematica Notation

Traditional Notation









Mathieu and Spheroidal Functions > MathieuCPrime[a,q,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/11.03.13.0009.01









  


  










Input Form





Derivative[2][w][z] - (Log[r] + 2 Log[s] + (4 b q r^z Log[r] Sin[2 b r^z])/ (a - 2 q Cos[2 b r^z])) Derivative[1][w][z] + (b^2 r^(2 z) (a - 2 q Cos[2 b r^z]) Log[r]^2 + Log[s] (Log[r] + Log[s]) + (4 b q r^z Log[r] Log[s] Sin[2 b r^z])/(a - 2 q Cos[2 b r^z])) w[z] == 0 /; w[z] == Subscript[c, 1] s^z MathieuCPrime[a, q, b r^z] + Subscript[c, 2] s^z MathieuSPrime[a, q, b r^z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r", "]"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "s", "]"]]]], "+", FractionBox[RowBox[List["4", " ", "b", " ", "q", " ", SuperscriptBox["r", "z"], " ", RowBox[List["Log", "[", "r", "]"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "b", " ", SuperscriptBox["r", "z"]]], "]"]]]], RowBox[List["a", "-", RowBox[List["2", " ", "q", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b", " ", SuperscriptBox["r", "z"]]], "]"]]]]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["r", RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["2", " ", "q", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b", " ", SuperscriptBox["r", "z"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", "r", "]"]], "2"]]], "+", RowBox[List[RowBox[List["Log", "[", "s", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r", "]"]], "+", RowBox[List["Log", "[", "s", "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["4", " ", "b", " ", "q", " ", SuperscriptBox["r", "z"], " ", RowBox[List["Log", "[", "r", "]"]], " ", RowBox[List["Log", "[", "s", "]"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "b", " ", SuperscriptBox["r", "z"]]], "]"]]]], RowBox[List["a", "-", RowBox[List["2", " ", "q", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b", " ", SuperscriptBox["r", "z"]]], "]"]]]]]]]]], ")"]], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["s", "z"], " ", RowBox[List["MathieuCPrime", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["s", "z"], " ", RowBox[List["MathieuSPrime", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["r", "z"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> Ce </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> Se </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> q </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <ci> q </ci> <apply> <ln /> <ci> r </ci> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <ci> r </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> s </ci> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <ci> q </ci> <apply> <ln /> <ci> r </ci> </apply> <apply> <ln /> <ci> s </ci> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> r </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ln /> <ci> s </ci> </apply> <apply> <plus /> <apply> <ln /> <ci> r </ci> </apply> <apply> <ln /> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> Ce </ci> </apply> <ci> a </ci> <ci> q </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> Se </ci> </apply> <ci> a </ci> <ci> q </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r_", "]"]], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "s_", "]"]]]], "+", FractionBox[RowBox[List["4", " ", "b_", " ", "q_", " ", SuperscriptBox["r_", "z_"], " ", RowBox[List["Log", "[", "r_", "]"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "b_", " ", SuperscriptBox["r_", "z_"]]], "]"]]]], RowBox[List["a_", "-", RowBox[List["2", " ", "q_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b_", " ", SuperscriptBox["r_", "z_"]]], "]"]]]]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b_", "2"], " ", SuperscriptBox["r_", RowBox[List["2", " ", "z_"]]], " ", RowBox[List["(", RowBox[List["a_", "-", RowBox[List["2", " ", "q_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b_", " ", SuperscriptBox["r_", "z_"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", "r_", "]"]], "2"]]], "+", RowBox[List[RowBox[List["Log", "[", "s_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "r_", "]"]], "+", RowBox[List["Log", "[", "s_", "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["4", " ", "b_", " ", "q_", " ", SuperscriptBox["r_", "z_"], " ", RowBox[List["Log", "[", "r_", "]"]], " ", RowBox[List["Log", "[", "s_", "]"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "b_", " ", SuperscriptBox["r_", "z_"]]], "]"]]]], RowBox[List["a_", "-", RowBox[List["2", " ", "q_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "b_", " ", SuperscriptBox["r_", "z_"]]], "]"]]]]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["s", "z"], " ", RowBox[List["MathieuCPrime", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["s", "z"], " ", RowBox[List["MathieuSPrime", "[", RowBox[List["a", ",", "q", ",", RowBox[List["b", " ", SuperscriptBox["r", "z"]]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.