html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 CarmichaelLambda

 http://functions.wolfram.com/13.09.27.0001.01

 Input Form

 CarmichaelLambda[p^n] == EulerPhi[p^n] /; Element[p, Primes] && p > 2 && Element[n, Integers] && n > 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["CarmichaelLambda", "[", SuperscriptBox["p", "n"], "]"]], "\[Equal]", RowBox[List["EulerPhi", "[", SuperscriptBox["p", "n"], "]"]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "\[And]", RowBox[List["p", ">", "2"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]

 MathML Form

 λ CarmichaelLambda ( p n ) ϕ TagBox["\[Phi]", EulerPhi] ( p n ) /; p TagBox["\[DoubleStruckCapitalP]", Function[Primes]] p > 2 n + Condition CarmichaelLambda p n EulerPhi p n p p 2 n SuperPlus [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["CarmichaelLambda", "[", SuperscriptBox["p_", "n_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["EulerPhi", "[", SuperscriptBox["p", "n"], "]"]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "&&", RowBox[List["p", ">", "2"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29