Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center

Download All Formulas For This Function
Mathematica Notebook
PDF File


Developed with Mathematica -- Download a Free Trial Version


Mathematica Notation

Traditional Notation

Number Theory Functions > EulerPhi[n] > Series representations > Other series representations




Input Form

EulerPhi[p] == Sum[DivisorProduct[1 - (1/Subscript[d, j]) Sum[Exp[(2 Pi I j k)/Subscript[d, j]], {k, 0, Subscript[d, j] - 1}], {Subscript[d, j], p}], {j, 1, p - 1}] /; Element[p, Primes] && Element[Subscript[d, j], Divisors[n]]

Standard Form

Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EulerPhi", "[", "p", "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], RowBox[List["DivisorProduct", "[", RowBox[List[RowBox[List["1", "-", RowBox[List[FractionBox["1", SubscriptBox["d", "j"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[SubscriptBox["d", "j"], "-", "1"]]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "j", " ", "k"]], SubscriptBox["d", "j"]], "]"]]]]]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["d", "j"], ",", "p"]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "\[And]", RowBox[List[SubscriptBox["d", "j"], "\[Element]", RowBox[List["Divisors", "[", "n", "]"]]]]]]]]]]

MathML Form

<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, EulerPhi] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mstyle scriptlevel='0'> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munder> <mo> &#8719; </mo> <mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> <mtext> </mtext> <mo> | </mo> <mtext> </mtext> <mi> p </mi> </mrow> </munder> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msub> <mi> d </mi> <mi> j </mi> </msub> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> j </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8712; </mo> <semantics> <mi> &#8473; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalP]&quot;, Function[Primes]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> d </mi> <mi> j </mi> </msub> <mo> &#8712; </mo> <mrow> <mi> divisors </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#981; </ms> <ci> EulerPhi </ci> </apply> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> p </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderscriptBox </ci> <ms> &#8719; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> | </ms> <ms> p </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> exp </ms> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#960; </ms> <ms> &#8520; </ms> <ms> j </ms> <ms> k </ms> </list> </apply> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> p </ms> <ms> &#8712; </ms> <apply> <ci> TagBox </ci> <ms> &#8473; </ms> <apply> <ci> Function </ci> <primes /> </apply> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> d </ms> <ms> j </ms> </apply> <ms> &#8712; </ms> <apply> <ci> RowBox </ci> <list> <ms> divisors </ms> <ms> ( </ms> <ms> n </ms> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>

Rule Form

Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EulerPhi", "[", "p_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], RowBox[List["DivisorProduct", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[SubscriptBox["d", "j"], "-", "1"]]], SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "j", " ", "k"]], SubscriptBox["d", "j"]]]]], SubscriptBox["d", "j"]]]], ",", RowBox[List["{", RowBox[List[SubscriptBox["d", "j"], ",", "p"]], "}"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Primes"]], "&&", RowBox[List[SubscriptBox["d", "j"], "\[Element]", RowBox[List["Divisors", "[", "n", "]"]]]]]]]]]]]]

Date Added to functions.wolfram.com (modification date)