Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











EulerPhi






Mathematica Notation

Traditional Notation









Number Theory Functions > EulerPhi[n] > Summation > Asymptotic finite summation





http://functions.wolfram.com/13.06.23.0010.01









  


  










Input Form





Sum[1/Log[EulerPhi[k]], {k, 3, n}] \[Proportional] n/Log[n] + Subscript[a, 2] (n/Log[x]) + O[n/Log[n]^2] /; (n -> Infinity && Subscript[a, 2] == 1 - Sum[(1/Prime[k]) Log[1 - 1/Prime[k]], {k, 1, Infinity}])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "3"]], "n"], FractionBox["1", RowBox[List["Log", "[", RowBox[List["EulerPhi", "[", "k", "]"]], "]"]]]]], "\[Proportional]", RowBox[List[FractionBox["n", RowBox[List["Log", "[", "n", "]"]]], "+", RowBox[List[SubscriptBox["a", "2"], FractionBox[RowBox[List["n", " "]], RowBox[List["Log", "[", "x", "]"]]]]], "+", RowBox[List["O", "[", " ", FractionBox[RowBox[List["n", " "]], SuperscriptBox[RowBox[List["Log", "[", "n", "]"]], "2"]], "]"]]]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", RowBox[List["\[Infinity]", "\[And]", RowBox[List[SubscriptBox["a", "2"], "\[Equal]", RowBox[List["1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["Prime", "[", "k", "]"]]], RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox["1", RowBox[List["Prime", "[", "k", "]"]]]]], "]"]]]]]]]]]]]]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 3 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mn> 1 </mn> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, EulerPhi] </annotation> </semantics> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mi> n </mi> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mi> n </mi> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> n </mi> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mi> k </mi> </msub> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mi> k </mi> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mi> k </mi> </msub> <mo> &#8712; </mo> <mi> &#8473; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 3 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ln /> <apply> <ci> EulerPhi </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <ln /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <ln /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <power /> <apply> <ln /> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> n </ci> <infinity /> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> k </ci> </apply> <ci> &#8473; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "3"]], "n_"], FractionBox["1", RowBox[List["Log", "[", RowBox[List["EulerPhi", "[", "k", "]"]], "]"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["n", RowBox[List["Log", "[", "n", "]"]]], "+", FractionBox[RowBox[List[SubscriptBox["a", "2"], " ", "n"]], RowBox[List["Log", "[", "x", "]"]]], "+", RowBox[List["O", "[", FractionBox["n", SuperscriptBox[RowBox[List["Log", "[", "n", "]"]], "2"]], "]"]]]], "/;", RowBox[List["(", RowBox[List["n", "\[Rule]", RowBox[List["\[Infinity]", "&&", RowBox[List[SubscriptBox["a", "2"], "\[Equal]", RowBox[List["1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox["1", RowBox[List["Prime", "[", "k", "]"]]]]], "]"]], RowBox[List["Prime", "[", "k", "]"]]]]]]]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.