Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
NorlundB






Mathematica Notation

Traditional Notation









Polynomials > NorlundB[n,α,z] > Specific values > Specialized values > For fixed alpha, z





http://functions.wolfram.com/05.17.03.0014.01









  


  










Input Form





NorlundB[8, \[Alpha], z] == z^8 - 4 z^7 \[Alpha] - 7 z^5 (-1 + \[Alpha]) \[Alpha]^2 + (7/3) z^6 \[Alpha] (-1 + 3 \[Alpha]) - (7/12) z^3 \[Alpha]^2 (2 + 5 \[Alpha] - 10 \[Alpha]^2 + 3 \[Alpha]^3) + (7/24) z^4 \[Alpha] (2 + 5 \[Alpha] - 30 \[Alpha]^2 + 15 \[Alpha]^3) - (1/144) z \[Alpha]^2 (-16 - 42 \[Alpha] + 7 \[Alpha]^2 + 105 \[Alpha]^3 - 63 \[Alpha]^4 + 9 \[Alpha]^5) + (1/144) z^2 \[Alpha] (-16 - 42 \[Alpha] + 91 \[Alpha]^2 + 315 \[Alpha]^3 - 315 \[Alpha]^4 + 63 \[Alpha]^5) + (\[Alpha] (144 + 404 \[Alpha] - 540 \[Alpha]^2 - 2345 \[Alpha]^3 - 840 \[Alpha]^4 + 3150 \[Alpha]^5 - 1260 \[Alpha]^6 + 135 \[Alpha]^7))/34560










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["NorlundB", "[", RowBox[List["8", ",", "\[Alpha]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["z", "8"], "-", RowBox[List["4", " ", SuperscriptBox["z", "7"], " ", "\[Alpha]"]], "-", RowBox[List["7", " ", SuperscriptBox["z", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Alpha]"]], ")"]], " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List[FractionBox["7", "3"], " ", SuperscriptBox["z", "6"], " ", "\[Alpha]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", "\[Alpha]"]]]], ")"]]]], "-", RowBox[List[FractionBox["7", "12"], " ", SuperscriptBox["z", "3"], " ", SuperscriptBox["\[Alpha]", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["5", " ", "\[Alpha]"]], "-", RowBox[List["10", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Alpha]", "3"]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "24"], " ", SuperscriptBox["z", "4"], " ", "\[Alpha]", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["5", " ", "\[Alpha]"]], "-", RowBox[List["30", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["\[Alpha]", "3"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "144"], " ", "z", " ", SuperscriptBox["\[Alpha]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "-", RowBox[List["42", " ", "\[Alpha]"]], "+", RowBox[List["7", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["105", " ", SuperscriptBox["\[Alpha]", "3"]]], "-", RowBox[List["63", " ", SuperscriptBox["\[Alpha]", "4"]]], "+", RowBox[List["9", " ", SuperscriptBox["\[Alpha]", "5"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "144"], " ", SuperscriptBox["z", "2"], " ", "\[Alpha]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "-", RowBox[List["42", " ", "\[Alpha]"]], "+", RowBox[List["91", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["315", " ", SuperscriptBox["\[Alpha]", "3"]]], "-", RowBox[List["315", " ", SuperscriptBox["\[Alpha]", "4"]]], "+", RowBox[List["63", " ", SuperscriptBox["\[Alpha]", "5"]]]]], ")"]]]], "+", FractionBox[RowBox[List["\[Alpha]", " ", RowBox[List["(", RowBox[List["144", "+", RowBox[List["404", " ", "\[Alpha]"]], "-", RowBox[List["540", " ", SuperscriptBox["\[Alpha]", "2"]]], "-", RowBox[List["2345", " ", SuperscriptBox["\[Alpha]", "3"]]], "-", RowBox[List["840", " ", SuperscriptBox["\[Alpha]", "4"]]], "+", RowBox[List["3150", " ", SuperscriptBox["\[Alpha]", "5"]]], "-", RowBox[List["1260", " ", SuperscriptBox["\[Alpha]", "6"]]], "+", RowBox[List["135", " ", SuperscriptBox["\[Alpha]", "7"]]]]], ")"]]]], "34560"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, NorlundB] </annotation> </semantics> <mn> 8 </mn> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mi> z </mi> <mn> 8 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#945; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 24 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#945; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 144 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#945; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 63 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 315 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 315 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 91 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 144 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 63 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 105 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 42 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#945; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 135 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1260 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3150 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 840 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2345 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 540 </mn> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 404 </mn> <mo> &#8290; </mo> <mi> &#945; </mi> </mrow> <mo> + </mo> <mn> 144 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 34560 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> NorlundB </ci> <cn type='integer'> 8 </cn> <ci> &#945; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> &#945; </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 7 <sep /> 3 </cn> <ci> &#945; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 7 <sep /> 24 </cn> <ci> &#945; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 7 <sep /> 12 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 144 </cn> <ci> &#945; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 63 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 315 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 315 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 91 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42 </cn> <ci> &#945; </ci> </apply> </apply> <cn type='integer'> -16 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 144 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 63 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 105 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42 </cn> <ci> &#945; </ci> </apply> </apply> <cn type='integer'> -16 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> &#945; </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 135 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1260 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3150 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 840 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2345 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 540 </cn> <apply> <power /> <ci> &#945; </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 404 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 144 </cn> </apply> <apply> <power /> <cn type='integer'> 34560 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["NorlundB", "[", RowBox[List["8", ",", "\[Alpha]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["z", "8"], "-", RowBox[List["4", " ", SuperscriptBox["z", "7"], " ", "\[Alpha]"]], "-", RowBox[List["7", " ", SuperscriptBox["z", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Alpha]"]], ")"]], " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List[FractionBox["7", "3"], " ", SuperscriptBox["z", "6"], " ", "\[Alpha]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", "\[Alpha]"]]]], ")"]]]], "-", RowBox[List[FractionBox["7", "12"], " ", SuperscriptBox["z", "3"], " ", SuperscriptBox["\[Alpha]", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["5", " ", "\[Alpha]"]], "-", RowBox[List["10", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Alpha]", "3"]]]]], ")"]]]], "+", RowBox[List[FractionBox["7", "24"], " ", SuperscriptBox["z", "4"], " ", "\[Alpha]", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["5", " ", "\[Alpha]"]], "-", RowBox[List["30", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["\[Alpha]", "3"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "144"], " ", "z", " ", SuperscriptBox["\[Alpha]", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "-", RowBox[List["42", " ", "\[Alpha]"]], "+", RowBox[List["7", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["105", " ", SuperscriptBox["\[Alpha]", "3"]]], "-", RowBox[List["63", " ", SuperscriptBox["\[Alpha]", "4"]]], "+", RowBox[List["9", " ", SuperscriptBox["\[Alpha]", "5"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "144"], " ", SuperscriptBox["z", "2"], " ", "\[Alpha]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "-", RowBox[List["42", " ", "\[Alpha]"]], "+", RowBox[List["91", " ", SuperscriptBox["\[Alpha]", "2"]]], "+", RowBox[List["315", " ", SuperscriptBox["\[Alpha]", "3"]]], "-", RowBox[List["315", " ", SuperscriptBox["\[Alpha]", "4"]]], "+", RowBox[List["63", " ", SuperscriptBox["\[Alpha]", "5"]]]]], ")"]]]], "+", FractionBox[RowBox[List["\[Alpha]", " ", RowBox[List["(", RowBox[List["144", "+", RowBox[List["404", " ", "\[Alpha]"]], "-", RowBox[List["540", " ", SuperscriptBox["\[Alpha]", "2"]]], "-", RowBox[List["2345", " ", SuperscriptBox["\[Alpha]", "3"]]], "-", RowBox[List["840", " ", SuperscriptBox["\[Alpha]", "4"]]], "+", RowBox[List["3150", " ", SuperscriptBox["\[Alpha]", "5"]]], "-", RowBox[List["1260", " ", SuperscriptBox["\[Alpha]", "6"]]], "+", RowBox[List["135", " ", SuperscriptBox["\[Alpha]", "7"]]]]], ")"]]]], "34560"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.