Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ZernikeR






Mathematica Notation

Traditional Notation









Polynomials > ZernikeR[n,m,z] > Series representations > Generalized power series > Expansions at generic point z==z0





http://functions.wolfram.com/05.18.06.0002.01









  


  










Input Form





ZernikeR[n, m, z] \[Proportional] Cos[((n - m)/2) Pi] (Gamma[(2 + m + n)/2]/(Gamma[(2 - m + n)/2] m!)) Sum[(1/k!) Sum[(Binomial[k, i] Pochhammer[m - k + i + 1, k - i] Subscript[z, 0]^(m - k) Sum[(Pochhammer[2 j - i + 1, 2 (i - j)]/ (i - j)!) (2 Subscript[z, 0])^(2 j) ((Pochhammer[(2 + m + n)/2, j] Pochhammer[(m - n)/2, j])/Pochhammer[1 + m, j]) Hypergeometric2F1[(2 + m + n)/2 + j, (m - n)/2 + j, 1 + m + j, Subscript[z, 0]^2] (z - Subscript[z, 0])^k, {j, 0, i}])/2^i, {i, 0, k}], {k, 0, Infinity}] /; Element[n, Integers] && n >= 0 && Element[m, Integers] && m >= 0 && n >= m










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", "m", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "\[Pi]"]], "]"]], FractionBox[RowBox[List["Gamma", "[", FractionBox[RowBox[List["2", "+", "m", "+", "n"]], "2"], "]"]], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["2", "-", "m", "+", "n"]], "2"], "]"]], RowBox[List["m", "!"]], " "]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "k"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", "i"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["m", "-", "k", "+", "i", "+", "1"]], ",", RowBox[List["k", "-", "i"]]]], "]"]], " ", SuperscriptBox["2", RowBox[List["-", "i"]]], SubsuperscriptBox["z", "0", RowBox[List["m", "-", "k"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "i"], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", "j"]], "-", "i", " ", "+", "1"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List["i", "-", "j"]], ")"]]]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["i", "-", "j"]], ")"]], "!"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["z", "0"]]], ")"]], RowBox[List["2", " ", "j"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["2", "+", "m", "+", "n"]], "2"], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["m", "-", "n"]], "2"], ",", "j"]], "]"]]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "m"]], ",", "j"]], "]"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", "+", "m", "+", "n"]], "2"], "+", "j"]], ",", RowBox[List[FractionBox[RowBox[List["m", "-", "n"]], "2"], "+", "j"]], ",", RowBox[List["1", "+", "m", "+", "j"]], ",", SubsuperscriptBox["z", "0", "2"]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> i </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;i&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> i </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;k&quot;, &quot;+&quot;, &quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;i&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> i </mi> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> i </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> i </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;i&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;j&quot;]]]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;j&quot;]], &quot;)&quot;]]]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;n&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[RowBox[List[&quot;m&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;2&quot;], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, FractionBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;n&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, FractionBox[RowBox[List[&quot;m&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[SubsuperscriptBox[&quot;z&quot;, &quot;0&quot;, &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8805; </mo> <mi> m </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ZernikeR </ci> <ci> n </ci> <ci> m </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <cos /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> i </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> i </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <geq /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZernikeR", "[", RowBox[List["n_", ",", "m_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "k"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["k", ",", "i"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["m", "-", "k", "+", "i", "+", "1"]], ",", RowBox[List["k", "-", "i"]]]], "]"]], " ", SuperscriptBox["2", RowBox[List["-", "i"]]], " ", SubsuperscriptBox["zz", "0", RowBox[List["m", "-", "k"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "i"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "j"]], "-", "i", "+", "1"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List["i", "-", "j"]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["2", " ", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]]]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["m", "-", "n"]], "2"], ",", "j"]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]]]], "+", "j"]], ",", RowBox[List[FractionBox[RowBox[List["m", "-", "n"]], "2"], "+", "j"]], ",", RowBox[List["1", "+", "m", "+", "j"]], ",", SubsuperscriptBox["zz", "0", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["i", "-", "j"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "m"]], ",", "j"]], "]"]]]]]]]]]]], RowBox[List["k", "!"]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", "m", "+", "n"]], ")"]]]], "]"]], " ", RowBox[List["m", "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.