Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Specific values > Specialized values > For fixed z, a > For Phi(z,s,a)





http://functions.wolfram.com/10.06.03.0014.02









  


  










Input Form





LerchPhi[z, -n, a] == (1 - (1 - (-1)^n) UnitStep[-Re[a]]) (a^n + Sum[Binomial[n, j] PolyLog[-j, z] a^(n - j), {j, 0, n}]) + UnitStep[-Re[a]] (1 - (-1)^n) z^Floor[-Re[a]] (z ((a + Floor[-Re[a]] + 1)^n + Sum[Binomial[n, j] PolyLog[-j, z] (a + Floor[-Re[a]] + 1)^(n - j), {j, 0, n}]) + UnitStep[Im[a]] (1 + Floor[-Re[a]] + Floor[Re[a]]) ((Floor[-Re[a]] + a)^2)^(n/2)) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List["z", ",", RowBox[List["-", "n"]], ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]], RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List[SuperscriptBox["a", "n"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["-", "j"]], ",", "z"]], "]"]], " ", SuperscriptBox["a", RowBox[List["n", "-", "j"]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]], SuperscriptBox["z", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "1"]], ")"]], "n"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["-", "j"]], ",", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "1"]], ")"]], RowBox[List["n", "-", "j"]]]]]]]]], ")"]]]], "+", " ", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["Re", "[", "a", "]"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "a"]], ")"]], "2"], ")"]], RowBox[List["n", "/", "2"]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mi> n </mi> </msup> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LerchPhi </ci> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <apply> <floor /> <apply> <real /> <ci> a </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> UnitStep </ci> <apply> <imaginary /> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> j </ci> </apply> <apply> <ci> PolyLog </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> j </ci> </apply> <apply> <ci> PolyLog </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhi", "[", RowBox[List["z_", ",", RowBox[List["-", "n_"]], ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "n"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["-", "j"]], ",", "z"]], "]"]], " ", SuperscriptBox["a", RowBox[List["n", "-", "j"]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "1"]], ")"]], "n"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["-", "j"]], ",", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "1"]], ")"]], RowBox[List["n", "-", "j"]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["Re", "[", "a", "]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "+", "a"]], ")"]], "2"], ")"]], RowBox[List["n", "/", "2"]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.