Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,p,z] > Differentiation > Fractional integro-differentiation > With respect to nu





http://functions.wolfram.com/10.09.20.0008.01









  


  










Input Form





D[PolyLog[\[Nu], p, z], {\[Nu], \[Alpha]}] == Sum[(1/((k + p)! (k + p)^\[Nu])) ((-1)^k ((-\[Nu]) Log[p + k])^\[Alpha] GammaRegularized[-\[Alpha], 0, (-\[Nu]) Log[p + k]] StirlingS1[k + p, p] z^(k + p)), {k, 0, Infinity}]/\[Nu]^\[Alpha] /; Abs[z] <= 1 && Element[p, Integers] && p > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "\[Alpha]"]], "}"]]], RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", "p", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["\[Nu]", RowBox[List["-", "\[Alpha]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "p"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "p"]], ")"]], "\[Nu]"]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List["p", "+", "k"]], "]"]]]], ")"]], "\[Alpha]"], RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List["p", "+", "k"]], "]"]]]]]], "]"]], RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["k", "+", "p"]], ",", "p"]], "]"]], " ", SuperscriptBox["z", RowBox[List["k", "+", "p"]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[LessEqual]", "1"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <msub> <semantics> <mi> S </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> &#957; </mi> <mo> , </mo> <mi> p </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mi> &#957; </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mo> ( </mo> <mi> p </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> k </mi> <mo> + </mo> <mi> p </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8804; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> PolyLog </ci> <ci> &#957; </ci> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <ln /> <apply> <plus /> <ci> k </ci> <ci> p </ci> </apply> </apply> </apply> <ci> &#945; </ci> </apply> <apply> <ci> GammaRegularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <ln /> <apply> <plus /> <ci> k </ci> <ci> p </ci> </apply> </apply> </apply> </apply> <apply> <ci> StirlingS1 </ci> <apply> <plus /> <ci> k </ci> <ci> p </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> k </ci> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <ci> p </ci> </apply> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <leq /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["PolyLog", "[", RowBox[List["\[Nu]_", ",", "p_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[Nu]", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List["p", "+", "k"]], "]"]]]], ")"]], "\[Alpha]"], " ", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "\[Nu]"]], " ", RowBox[List["Log", "[", RowBox[List["p", "+", "k"]], "]"]]]]]], "]"]], " ", RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["k", "+", "p"]], ",", "p"]], "]"]], " ", SuperscriptBox["z", RowBox[List["k", "+", "p"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "p"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "p"]], ")"]], "\[Nu]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[LessEqual]", "1"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.