Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s] > Differentiation > Symbolic differentiation > Derivatives at special points





http://functions.wolfram.com/10.01.20.0027.01









  


  










Input Form





D[Zeta[0], {s, n}] == (-1)^n n! (Im[z^(n + 1)]/(Pi (n + 1)!) + (1/Pi) Sum[(Subscript[a, k] Im[z^(n - k)])/(n - k)!, {k, 1, n - 1}]) /; Element[n, Integers] && n >= 0 && z = -Log[2 Pi] - (I Pi)/2 && Subscript[a, k] = SeriesTerm[Gamma[s] Zeta[s] - 1/(s - 1), {s, 1, k}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["s", ",", "n"]], "}"]]], RowBox[List["Zeta", "[", "0", "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Im", "[", SuperscriptBox["z", RowBox[List["n", "+", "1"]]], "]"]], RowBox[List["\[Pi]", " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]]]]], "+", RowBox[List[FractionBox["1", "\[Pi]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SubscriptBox["a", "k"], " ", RowBox[List["Im", "[", SuperscriptBox["z", RowBox[List["n", "-", "k"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", "z"]]]], "=", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "2"]]], "\[And]", SubscriptBox["a", "k"]]], "=", RowBox[List["SeriesTerm", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Zeta", "[", "s", "]"]]]], "-", FractionBox["1", RowBox[List["s", "-", "1"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", "1", ",", "k"]], "}"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;n&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mi> z </mi> </mrow> </mrow> <mo> = </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ] </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;s&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;n&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mi> z </mi> </mrow> </mrow> <mo> = </mo> <mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ] </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;s&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["s", ",", "n"]], "}"]]]]], RowBox[List["Zeta", "[", "0", "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Im", "[", SuperscriptBox["z", RowBox[List["n", "+", "1"]]], "]"]], RowBox[List["\[Pi]", " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]]]]], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SubscriptBox["a", "k"], " ", RowBox[List["Im", "[", SuperscriptBox["z", RowBox[List["n", "-", "k"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]]], "\[Pi]"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", "z"]]]], "=", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "2"]]], "&&", SubscriptBox["a", "k"]]], "=", RowBox[List["SeriesTerm", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Zeta", "[", "s", "]"]]]], "-", FractionBox["1", RowBox[List["s", "-", "1"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", "1", ",", "k"]], "}"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.