Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration





Indefinite integration

Involving only one direct function

>
>
>

Involving one direct function and elementary functions

Involving power function

Involving power

Power arguments

>
>
>
>
>
>

Involving zalpha-1and arguments a z

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a z+b

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a zr

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a zr+b

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving rational functions

Involving (a z+b)-n

>
>
>
>
>
>
>
>
>
>
>
>

Involving (a z2+b)-n

>
>
>
>
>

Involving (a z2+b z+c)-n

>
>
>
>

Involving algebraic functions

Involving (a z+b)beta

>
>
>
>
>
>

Involving exponential function

Involving exp

Involving ab z cos(c z)

>
>
>
>
>

Involving ab z+e cos(c z)

>
>
>
>

Involving ab z cos(c z+d)

>
>
>
>

Involving ab z+e cos(c z+d)

>
>
>
>

Involving ab zr cos(c z)

>
>
>
>

Involving ab zr+e cos(c z)

>
>
>
>

Involving ab zr+d z cos(c z)

>
>
>
>

Involving ab zr+d z+e cos(c z)

>
>
>
>

Involving ab zr cos(f z+g)

>
>
>
>

Involving ab zr+e cos(f z+g)

>
>
>
>

Involving ab zr+d z cos(f z+g)

>
>
>
>

Involving ab zr+d z+e cos(f z+g)

>
>
>
>

Involving ab z cos(c zr)

>
>
>
>

Involving ab z+e cos(c zr)

>
>
>
>

Involving ab zrcos(c zr)

>
>
>
>
>
>

Involving ab zr+ecos(c zr)

>
>
>
>
>
>

Involving ab zr+d z cos(c zr)

>
>
>
>

Involving ab zr+d z+e cos(c zr)

>
>
>
>

Involving ad z cos(c zr+g)

>
>
>
>

Involving ad z+e cos(c zr+g)

>
>
>
>

Involving ab zrcos(c zr+g)

>
>
>
>
>
>

Involving ab zr+ecos(c zr+g)

>
>
>
>
>
>

Involving ab zr+d z cos(c zr+g)

>
>
>
>

Involving ab zr+d z+e cos(c zr+g)

>
>
>
>

Involving rational functions of exp

Involving (a+b ed z)-n cos(c z+e)

>
>

Involving ep z(a+b ed z)-n cos(c z+e)

>
>

Involving algebraic functions of exp

Involving (a+b ed z)beta cos(c z+e)

>
>

Involving ep z(a+b ed z)beta cos(c z+e)

>
>

Involving exponential function and a power function

Involving exp and power

Involving zalpha-1 eb z cos(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 eb z+e cos(c z)

>
>
>
>

Involving zalpha-1 eb z cos(c z+d)

>
>
>
>

Involving zalpha-1 eb z+e cos(c z+d)

>
>
>
>

Involving zn eb zr cos(c z)

>
>

Involving zn eb zr+e cos(c z)

>
>

Involving zneb zr+d zcos(c z)

>
>

Involving zneb zr+d z+ecos(c z)

>
>

Involving zn eb zr cos(f z+g)

>
>

Involving zn eb zr+e cos(f z+g)

>
>

Involving zn eb zr+d z cos(f z+g)

>
>

Involving zn eb zr+d z+e cos(f z+g)

>
>

Involving zn eb z cos(c zr)

>
>

Involving zn eb z+e cos(c zr)

>
>

Involving zalpha-1eb zrcos(c zr)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1eb zr+ecos(c zr)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zn eb zr+d z cos(c zr)

>
>

Involving zn eb zr+d z+e cos(c zr)

>
>

Involving zn ed z cos(c zr+g)

>
>

Involving zn ed z+e cos(c zr+g)

>
>

Involving zalpha-1eb zrcos(c zr+g)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1eb zr+ecos(c zr+g)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zn eb zr+d z cos(c zr+g)

>
>

Involving zn eb zr+d z+e cos(c zr+g)

>
>

Involving exponential and algebraic functions

Involving exp and algebraic functions

Involving (a z+b)beta dz

>
>
>
>
>

Arguments involving polynomials

Involving a z2+b z+c

>

Involving a z2+b z

>

Involving a z2+c

>

Arguments involving rational functions

Involving a z2+b/z2

>

Involving a z2+b/z2+c

>

Arguments involving algebraic functions

Involving a z+b z1/2+c

>

Involving a z+b z1/2

>

Involving a zr+c

>
>
>

Arguments involving exponential functions

>
>

Arguments involving trigonometric functions

Involving tan

>
>

Involving cot

>
>

Arguments involving hyperbolic functions

Involving tanh

>
>

Involving coth

>
>

Arguments involving inverse trigonometric functions

Involving sin-1

>
>

Involving cos-1

>
>

Involving tan-1

>
>

Involving cot-1

>
>

Involving csc-1

>
>

Involving sec-1

>
>

Arguments involving inverse hyperbolic functions

Involving sinh-1

>
>

Involving cosh-1

>
>

Involving tanh-1

>
>

Involving coth-1

>
>

Involving csch-1

>
>

Involving sech-1

>
>

Arguments involving polynomials or algebraic functions and power factors

Involving power

Involving zn cos(a zr+b z)

>
>

Involving zn cos(a zr+b z+c)

>
>

Arguments involving polynomials or algebraic functions and factors involving exponential functions

Involving exp

Involving ad z cos(c zr+f z)

>
>
>
>

Involving ad z+e cos(c zr+f z)

>
>
>
>

Involving ab zr cos(c zr+f z)

>
>
>
>

Involving ab zr+e cos(c zr+f z)

>
>
>
>

Involving ab zr+d z cos(c zr+f z)

>
>
>
>

Involving ab zr+d z+e cos(c zr+f z)

>
>
>
>

Involving ad z cos(c zr+f z+g)

>
>
>
>

Involving ad z+e cos(c zr+f z+g)

>
>
>
>

Involving ab zr cos(c zr+f z+g)

>
>
>
>

Involving ab zr+e cos(c zr+f z+g)

>
>
>
>

Involving ab zr+d z cos(c zr+f z+g)

>
>
>
>

Involving ab zr+d z+e cos(c zr+f z+g)

>
>
>
>

Arguments involving polynomials or algebraic functions and factors involving exponential function and a power function

Involving exp and power

Involving zn ed z cos(c zr+f z)

>
>

Involving zn ed z+e cos(c zr+f z)

>
>

Involving zn eb zr cos(c zr+f z)

>
>

Involving zn eb zr+e cos(c zr+f z)

>
>

Involving zn eb zr+d z cos(c zr+f z)

>
>

Involving zn eb zr+d z+e cos(c zr+f z)

>
>

Involving zn ed z cos(c zr+f z+g)

>
>

Involving zn ed z+e cos(c zr+f z+g)

>
>

Involving zn eb zr cos(c zr+f z+g)

>
>

Involving zn eb zr+e cos(c zr+f z+g)

>
>

Involving zn eb zr+d z cos(c zr+f z+g)

>
>

Involving zn eb zr+d z+e cos(c zr+f z+g)

>
>

Involving trigonometric functions

Involving sin

Involving sin(c z)cos(a z)

>
>

Involving sin(c z+d)cos(a z)

>

Involving sin(c z)cos(a z+b)

>

Involving sin(c z+d)cos(a z+b)

>

Involving sin(b zr)cos(c z)

>
>

Involving sin(b zr+e)cos(c z)

>
>

Involving sin(b zr+d z)cos(c z)

>
>

Involving sin(b zr+d z+e)cos(c z)

>
>

Involving sin(b zr) cos(f z+g)

>
>

Involving sin(b zr+e) cos(f z+g)

>
>

Involving sin(b zr+d z) cos(f z+g)

>
>

Involving sin(b zr+d z+e) cos(f z+g)

>
>

Involving sin(b z)cos(c zr)

>
>

Involving sin(d z+e) cos(c zr)

>
>

Involving sin(b zr) cos(c zr)

>
>
>

Involving sin(b zr+e) cos(c zr)

>
>
>

Involving sin(b zr+d z) cos(c zr)

>
>

Involving sin(b zr+d z+e) cos(c zr)

>
>

Involving sin(d z) cos(c zr+g)

>
>

Involving sin(d z+e) cos(c zr+g)

>
>

Involving sin(b zr) cos(c zr+g)

>
>
>

Involving sin(b zr+e) cos(c zr+g)

>
>
>

Involving sin(b zr+d z) cos(c zr+g)

>
>

Involving sin(b zr+d z+e) cos(c zr+g)

>
>

Involving sin(d z) cos(c zr+f z)

>
>

Involving sin(d z+e) cos(c zr+f z)

>
>

Involving sin(b zr) cos(c zr+f z)

>
>

Involving sin(b zr+e) cos(c zr+f z)

>
>

Involving sin(b zr+d z) cos(c zr+f z)

>
>

Involving sin(b zr+d z+e) cos(c zr+f z)

>
>

Involving sin(d z) cos(c zr+f z+g)

>
>

Involving sin(d z+e) cos(c zr+f z+g)

>
>

Involving sin(b zr) cos(c zr+f z+g)

>
>

Involving sin(b zr+e) cos(c zr+f z+g)

>
>

Involving sin(b zr+d z) cos(c zr+f z+g)

>
>

Involving sin(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving powers of sin

Involving sinmu(c z)sin(a z)

>
>
>
>

Involving sinmu(c z+d)cos(a z)

>
>

Involving sinmu(c z)cos(a z+b)

>
>

Involving sinmu(c z+d)cos(a z+b)

>
>

Involving sinm(b zr)cos(c z)

>
>

Involving sinm(b zr+e)cos(c z)

>
>

Involving sinm(b zr+d z)cos(c z)

>
>

Involving sinm(b zr+d z+e)cos(c z)

>
>

Involving sinm(b zr) cos(f z+g)

>
>

Involving sinm(b zr+e) cos(f z+g)

>
>

Involving sinm(b zr+d z) cos(f z+g)

>
>

Involving sinm(b zr+d z+e) cos(f z+g)

>
>

Involving sin(b z)mcos(c zr)

>
>

Involving sinm(d z+e) cos(c zr)

>
>

Involving sinm(b zr) cos(c zr)

>
>
>

Involving sinm(b zr+e) cos(c zr)

>
>
>

Involving sinm(b zr+d z) cos(c zr)

>
>

Involving sinm(b zr+d z+e) cos(c zr)

>
>

Involving sinm(d z) cos(c zr+g)

>
>

Involving sinm(d z+e) cos(c zr+g)

>
>

Involving sinm(b zr) cos(c zr+g)

>
>
>

Involving sinm(b zr+e) cos(c zr+g)

>
>
>

Involving sinm(b zr+d z) cos(c zr+g)

>
>

Involving sinm(b zr+d z+e) cos(c zr+g)

>
>

Involving sinm(d z) cos(c zr+f z)

>
>

Involving sinm(d z+e) cos(c zr+f z)

>
>

Involving sinm(b zr) cos(c zr+f z)

>
>

Involving sinm(b zr+e) cos(c zr+f z)

>
>

Involving sinm(b zr+d z) cos(c zr+f z)

>
>

Involving sinm(b zr+d z+e) cos(c zr+f z)

>
>

Involving sinm(d z) cos(c zr+f z+g)

>
>

Involving sinm(d z+e) cos(c zr+f z+g)

>
>

Involving sinm(b zr) cos(c zr+f z+g)

>
>

Involving sinm(b zr+e) cos(c zr+f z+g)

>
>

Involving sinm(b zr+d z) cos(c zr+f z+g)

>
>

Involving sinm(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving products of sin

>

Involving rational functions of sin

Involving cos(c z)/a+b sin(d z)

>

Involving (a+b sin(d z))-ncos(c z)

>

Involving cos(c z)/a+b sin2(d z)

>

Involving (a+b sin2(d z))-ncos(c z)

>

Involving sin(e z)cos(c z)/a+b sin(d z)

>

Involving sin(e z)cos(c z)(a+b sin(d z))-n

>

Involving sin(e z)cos(c z)/a+b sin2(d z)

>

Involving sin(e z)cos(c z)(a+b sin2(d z))-n

>

Involving algebraic functions of sin

Involving (a+b sin(d z))beta cos(c z)

>

Involving (a+b sin2(d z))beta cos(c z)

>

Involving sin(e z)cos(c z)(a+b sin(d z))beta

>

Involving sin(e z)cos(c z)(a+b sin2(d z))beta

>

Involving trigonometric and a power functions

Involving sin and power

Involving zalpha-1sin(c z)sin(a z)

>
>
>

Involving zalpha-1sin(c z+d)cos(a z)

>

Involving zalpha-1sin(c z)cos(a z+b)

>

Involving zalpha-1sin(c z+d)cos(a z+b)

>

Involving zn sin(b zr) cos(c z)

>
>

Involving zn sin(b zr+e) cos(c z)

>
>

Involving znsin(b zr+d z)cos(c z)

>
>

Involving znsin(b zr+d z+e)cos(c z)

>
>

Involving zn sin(b zr) cos(f z+g)

>
>

Involving zn sin(b zr+e) cos(f z+g)

>
>

Involving zn sin(b zr+d z) cos(f z+g)

>
>

Involving zn sin(b zr+d z+e) cos(f z+g)

>
>

Involving zn sin(b z) cos(c zr)

>
>

Involving zn sin(d z+e) cos(c zr)

>
>

Involving zalpha-1 sin(b zr) cos(c zr)

>
>
>

Involving zalpha-1 sin(b zr+e) cos(c zr)

>
>
>

Involving zn sin(b zr+d z) cos(c zr)

>
>

Involving zn sin(b zr+d z+e) cos(c zr)

>
>

Involving zn sin(d z) cos(c zr+g)

>
>

Involving zn sin(d z+e) cos(c zr+g)

>
>

Involving zalpha-1 sin(b zr) cos(c zr+g)

>
>
>

Involving zalpha-1 sin(b zr+e) cos(c zr+g)

>
>
>

Involving zn sin(b zr+d z) cos(c zr+g)

>
>

Involving zn sin(b zr+d z+e) cos(c zr+g)

>
>

Involving zn sin(d z) cos(c zr+f z)

>
>

Involving zn sin(d z+e) cos(c zr+f z)

>
>

Involving zn sin(b zr) cos(c zr+f z)

>
>

Involving zn sin(b zr+e) cos(c zr+f z)

>
>

Involving zn sin(b zr+d z) cos(c zr+f z)

>
>

Involving zn sin(b zr+d z+e) cos(c zr+f z)

>
>

Involving zn sin(d z) cos(c zr+f z+g)

>
>

Involving zn sin(d z+e) cos(c zr+f z+g)

>
>

Involving zn sin(b zr) cos(c zr+f z+g)

>
>

Involving zn sin(b zr+e) cos(c zr+f z+g)

>
>

Involving zn sin(b zr+d z) cos(c zr+f z+g)

>
>

Involving zn sin(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving powers of sin and power

Involving zalpha-1sinmu(c z)cos(a z)

>
>

Involving zalpha-1sinmu(c z+d)cos(a z)

>
>

Involving zalpha-1sinmu(c z)cos(a z+b)

>
>

Involving zalpha-1sinmu(c z+d)cos(a z+b)

>
>

Involving zn sinm(b zr) cos(c z)

>
>

Involving zn sinm(b zr+e) cos(c z)

>
>

Involving znsinm(b zr+d z)cos(c z)

>
>

Involving znsinm(b zr+d z+e)cos(c z)

>
>

Involving zn sinm(b zr) cos(f z+g)

>
>

Involving zn sinm(b zr+e) cos(f z+g)

>
>

Involving zn sinm(b zr+d z) cos(f z+g)

>
>

Involving zn sinm(b zr+d z+e) cos(f z+g)

>
>

Involving zn sinm(d z+e) cos(c zr)

>
>

Involving zn sinm(d z+e) cos(c zr)

>
>

Involving zalpha-1 sinm(b zr) cos(c zr)

>
>
>

Involving zalpha-1 sinm(b zr+e) cos(c zr)

>
>
>

Involving zn sinm(b zr+d z) cos(c zr)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr)

>
>

Involving zn sinm(d z) cos(c zr+g)

>
>

Involving zn sinm(d z+e) cos(c zr+g)

>
>

Involving zalpha-1 sinm(b zr) cos(c zr+g)

>
>
>

Involving zalpha-1 sinm(b zr+e) cos(c zr+g)

>
>
>

Involving zn sinm(b zr+d z) cos(c zr+g)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr+g)

>
>

Involving zn sinm(d z) cos(c zr+f z)

>
>

Involving zn sinm(d z+e) cos(c zr+f z)

>
>

Involving zn sinm(b zr) cos(c zr+f z)

>
>

Involving zn sinm(b zr+e) cos(c zr+f z)

>
>

Involving zn sinm(b zr+d z) cos(c zr+f z)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr+f z)

>
>

Involving zn sinm(d z) cos(c zr+f z+g)

>
>

Involving zn sinm(d z+e) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr+e) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z) cos(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving trigonometric and exponential functions

Involving sin and exp

Involving ep zsin(c z)cosnu(a z)

>
>

Involving ep zsinmu(c z+d)cos(a z)

>

Involving ep zsin(c z)cos(a z+b)

>

Involving ep zsin(c z+d)cos(a z+b)

>

Involving ep zrsin(b z2)cos(c z)

>
>

Involving ep zrsin(b z)cos(c z)

>
>

Involving ep zsin(b zr)cos(c z)

>
>

Involving ep z sin(b z)cos(c zr)

>
>

Involving ep zr sin(b z)cos(c zr)

>
>

Involving ep z sin(b zr)cos(c zr)

>
>

Involving ep zr sin(b zr)cos(c zr)

>
>
>

Involving eb zr+e sin(a zr+q) cos(c zr+g)

>
>
>

Involving eb zr+d z+e sin(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving sin and rational functions of exp

Involving sin(e z)cos(c z)(a+b ed z)-n

>

Involving ep zsin(e z)cos(c z)(a+b ed z)-n

>

Involving sin and algebraic functions of exp

Involving (a+b ed z)beta sin(e z)cos(c z)

>

Involving ep z(a+b ed z)beta sin(e z)cos(c z)

>

Involving powers of sin and exp

Involving ep zsinmu(c z)cos(a z)

>
>

Involving ep zsinmu(c z+d)cos(a z)

>
>

Involving ep zsinmu(c z)cos(a z+b)

>
>

Involving ep zsinmu(c z+d)cos(a z+b)

>
>

Involving ep zrsinm(b zr)cos(c z)

>
>

Involving ep zrsinm(b z)cos(c z)

>
>

Involving ep zsinm(b zr)cos(c z)

>
>

Involving ep z sinm(b z)cos(c zr)

>
>

Involving ep zr sinm(b z)cos(c zr)

>
>

Involving ep z sinm(b zr)cos(c zr)

>
>

Involving ep zr sinm(b zr)cos(c zr)

>
>
>

Involving eb zr+e sinm(a zr+q) cos(c zr+g)

>
>
>

Involving eb zr+d z+e sinm(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving powers of sin and rational functions of exp

Involving sinm(e z)cos(c z)(a+b ed z)-n

>

Involving ep zsinm(e z)cos(c z)(a+b ed z)-n

>

Involving powers of sin and algebraic functions of exp

Involving (a+b ed z)beta sinm(e z)cos(c z)

>

Involving ep z(a+b ed z)beta sinm(e z)cos(c z)

>

Involving products of sin and exp

>

Involving rational functions of sin and exp

Involving ep zcos(c z)/a+b sin(d z)

>

Involving ep z(a+b sin(d z))-ncos(c z)

>

Involving ep zcos(c z)/a+b sin2(d z)

>

Involving ep z(a+b sin2(d z))-ncos(c z)

>

Involving ep zsin(e z)cos(c z)/a+b sin(d z)

>

Involving ep zsin(e z)cos(c z)(a+b sin(d z))-n

>

Involving ep zsin(e z)cos(c z)/a+b sin2(d z)

>

Involving ep zsin(e z)cos(c z)(a+b sin2(d z))-n

>

Involving algebraic functions of sin and exp

Involving ep z(a+b sin(d z))beta cos(c z)

>

Involving ep z(a+b sin2(d z))beta cos(c z)

>

Involving ep zsin(e z)cos(c z)(a+b sin(d z))beta

>

Involving ep zsin(e z)cos(c z)(a+b sin2(d z))beta

>

Involving trigonometric, exponential and a power functions

Involving sin, exp and power

Involving zalpha-1eb zsin(c z)cos(a z)

>

Involving zalpha-1ep zsin(c z+d)cos(a z)

>

Involving zalpha-1ep zsin(c z)cos(a z+b)

>

Involving zalpha-1ep zsin(c z+d)cos(a z+b)

>

Involving znep zrsin(b zr)cos(c z)

>
>

Involving znep zrsin(b z)cos(c z)

>
>

Involving znep zsin(b zr)cos(c z)

>
>

Involving znep z sin(b z)cos(c zr)

>
>

Involving znep zr sin(b z)cos(c zr)

>
>

Involving znep z sin(b zr)cos(c zr)

>
>

Involving zalpha-1ep zr sin(b zr)cos(c zr)

>
>
>

Involving zalpha-1 eb zr+e sin(a zr+q) cos(c zr+g)

>
>
>

Involving zn eb zr+d z+e sin(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving powers of sin, exp and power

Involving zalpha-1ep zsinmu(c z)cos(a z)

>
>

Involving zalpha-1ep zsinmu(c z+d)cos(a z)

>
>

Involving zalpha-1ep zsinmu(c z)cos(a z+b)

>
>

Involving zalpha-1ep zsinmu(c z+d)cos(a z+b)

>
>

Involving znep zrsinm(b zr)cosv(c z)

>
>

Involving znep zrsinm(b z)cos(c z)

>
>

Involving znep zsinm(b zr)cos(c z)

>
>

Involving znep z sinm(b z)cos(c zr)

>
>

Involving znep zr sinm(b z)cos(c zr)

>
>

Involving znep z sinm(b zr)cos(c zr)

>
>

Involving zalpha-1ep zr sinm(b zr)cos(c zr)

>
>
>

Involving zalpha-1 eb zr+e sinm(a zr+q) cos(c zr+g)

>
>
>

Involving zn eb zr+d z+e sinm(a zr+p z+q) cos(c zr+f z+g)

>
>

Involving functions of the direct function

Involving powers of the direct function

Involving powers of cos

Involving cosv(a z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving cosnu(a z+b)

>

Involving cosv(a z2+b/z2)

>

Involving cosv(a z2+b/z2+c)

>

Involving cosv(a zr)

>
>
>

Involving cosv(a(zr)p)

>
>
>

Involving cosv(a zr+b)

>
>
>

Involving cosv(a zr+b z)

>
>

Involving cosv(a zr+b z+c)

>
>

Involving products of the direct

Involving products of two direct functions

Involving cos(c z) cos(a z)

>

Involving cos(c z) cos(a z+b)

>

Involving cos(c z+d) cos(a z+b)

>

Involving cos(d z) cos(c zr)

>
>

Involving cos(d z+e) cos(c zr)

>
>

Involving cos(a zr) cos(c zr)

>
>
>

Involving cos(d z) cos(c zr+g)

>
>

Involving cos(d z+e) cos(c zr+g)

>
>

Involving cos(a zr) cos(c zr+g)

>
>
>

Involving cos(a zr+e) cos(c zr+g)

>
>
>

Involving cos(d z) cos(c zr+f z)

>
>

Involving cos(d z+e) cos(c zr+f z)

>
>

Involving cos(b zr) cos(c zr+f z)

>
>

Involving cos(b zr+e) cos(c zr+f z)

>
>

Involving cos(b zr+d z) cos(c zr+f z)

>
>

Involving cos(d z) cos(c zr+f z+g)

>
>

Involving cos(d z+e) cos(c zr+f z+g)

>
>

Involving cos(b zr) cos(c zr+f z+g)

>
>

Involving cos(b zr+e) cos(c zr+f z+g)

>
>

Involving cos(b zr+d z) cos(c zr+f z+g)

>
>

Involving cos(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving products of several direct functions

Involving cos(a z+alpha) cos(b z+beta) cos(c z+gamma)

>
>
>

Involving ∏ k=1ncos(ak z)

>

Involving products of powers of the direct function

Involving product of power of the direct function and the direct function

Involving cos(c z)cosnu(a z)

>
>
>
>
>
>
>
>

Involving cos(c z+d)cosnu(a z)

>
>

Involving cos(c z)cosnu(a z+b)

>
>

Involving cos(c z+d)cosnu(a z+b)

>
>

Involving cos(b zr) cosv(c z)

>
>

Involving cos(b zr+e) cosv(c z)

>
>

Involving cos(b zr+d z) cosv(c z)

>
>

Involving cos(b zr+d z+e) cosv(c z)

>
>

Involving cos(b zr) cosv(f z+g)

>
>

Involving cos(b zr+e) cosv(f z+g)

>
>

Involving cos(b zr+d z) cosv(f z+g)

>
>

Involving cos(b zr+d z+e) cosv(f z+g)

>
>

Involving cos(b z) cosv(c zr)

>
>

Involving cos(d z+e) cosv(c zr)

>
>

Involving cos(a zr) cosv(c zr)

>
>
>

Involving cos(a zr+e) cosv(c zr)

>
>
>

Involving cos(b zr+d z) cosv(c zr)

>
>

Involving cos(b zr+d z+e) cosv(c zr)

>
>

Involving cos(d z) cosv(c zr+g)

>
>

Involving cos(d z+e) cosv(c zr+g)

>
>

Involving cos(a zr) cosv(c zr+g)

>
>
>

Involving cos(a zr+e) cosv(c zr+g)

>
>
>

Involving cos(b zr+d z) cosv(c zr+g)

>
>

Involving cos(b zr+d z+e) cosv(c zr+g)

>
>

Involving cos(d z) cosv(c zr+f z)

>
>

Involving cos(d z+e) cosv(c zr+f z)

>
>

Involving cos(b zr) cosv(c zr+f z)

>
>

Involving cos(b zr+e) cosv(c zr+f z)

>
>

Involving cos(b zr+d z) cosv(c zr+f z)

>
>

Involving cos(b zr+d z+e) cosv(c zr+f z)

>
>

Involving cos(d z) cosv(c zr+f z+g)

>
>

Involving cos(d z+e) cosv(c zr+f z+g)

>
>

Involving cos(b zr) cosv(c zr+f z+g)

>
>

Involving cos(b zr+e) cosv(c zr+f z+g)

>
>

Involving cos(b zr+d z) cosv(c zr+f z+g)

>
>

Involving cos(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving product of powers of two direct functions

Involving cosmu(c z)cosv(a z)

>
>
>
>
>
>
>

Involving cosmu(c z)cosv(a z+b)

>
>

Involving cosmu(c z+d)cosv(a z+b)

>
>

Involving cosm(d z) cosv(c zr)

>
>

Involving cosm(d z+e) cosv(c zr)

>
>

Involving cosm(a zr) cosv(c zr)

>
>
>

Involving cosm(d z) cosv(c zr+g)

>
>

Involving cosm(d z+e) cosv(c zr+g)

>
>

Involving cosm(a zr) cosv(c zr+g)

>
>
>

Involving cosm(a zr+e) cosv(c zr+g)

>
>
>

Involving cosm(d z) cosv(c zr+f z)

>
>

Involving cosm(d z+e) cosv(c zr+f z)

>
>

Involving cosm(b zr) cosv(c zr+f z)

>
>

Involving cosm(b zr+e) cosv(c zr+f z)

>
>

Involving cosm(b zr+d z+e) cosv(c zr+f z)

>
>

Involving cosm(d z) cosv(c zr+f z+g)

>
>

Involving cosm(d z+e) cosv(c zr+f z+g)

>
>

Involving cosm(b zr) cosv(c zr+f z+g)

>
>

Involving cosm(b zr+e) cosv(c zr+f z+g)

>
>

Involving cosm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving cosm(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving rational functions of the direct function

Involving 1/a+b cos(c z)

>
>
>

Involving (a+b cos(c z))-n

>
>
>
>
>

Involving 1/a+b cosn(c z)

>
>
>
>
>
>

Involving (a+b cos2(c z))-n

>
>

Involving cos(d z)/a+b cos(c z)

>
>
>
>
>
>
>

Involving cos(d z)(a+b cos(c z))-n

>
>
>
>
>
>
>
>

Involving cos(d z)/a+b cos2(c z)

>
>
>

Involving cosm(c z)/a+b cosn(c z)

>
>
>

Involving cos(d z)(a+b cos2(c z))-n

>

Involving cosm(c z)(a+b cos2(c z))-n

>
>

Involving cos(e z)cos(d z)/a+b cos(c z)

>

Involving cos(e z)cos(d z)(a+b cos(c z))-n

>

Involving cos(e z)cos(d z)/a+b cos2(c z)

>

Involving cos(e z)cos(d z)(a+b cos2(c z))-n

>

Involving algebraic functions of the direct function

Involving (a+b cos(c z))beta

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b cos(c z))nu)beta

>
>
>
>
>

Involving (a+b cos(c z))beta cos(c z)

>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b cos(c z))nu)beta cos(d z)

>
>
>
>
>
>
>

Involving (a+b cos(c z))beta cosnu(c z)

>
>
>

Involving (a+b cos(c z))betaand rational function of cos(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving (a+b cos(2c z))beta cos(c z)

>
>
>
>
>
>

Involving ((a+b cos(2c z))m)+-1/2cos(c z)

>
>
>
>

Involving (a+b cos(2c z))beta cosv(c z)

>
>
>
>
>
>
>
>
>
>
>
>

Involving cos(e z)cos(d z)(a+b cos(c z))beta

>

Involving (a+b cos2(c z))beta

>
>
>
>
>
>
>

Involving (a+b cos2(c z))betacos(d z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b cos2(c z))nu)beta

>
>
>
>
>

Involving ((a+b cos2(c z))nu)betacos(d z)

>
>
>
>
>
>
>

Involving (a+b cos2(c z))beta cosnu(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving (a+b sin2(c z))betaand rational function of sin(c z)

>
>
>
>
>
>
>

Involving cos(e z)cos(d z)(a+b cos2(c z))beta

>

Involving (a+b cos2(c z))betaand algebraic function of cos(c z)

>
>

Other integrals

>
>

Involving functions of the direct function and a power function

Involving powers of the direct function and a power function

Involving powers of sin and power

Involving zalpha-1 cosv(a z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 cosnu(a z+b)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 cosv(a zr)

>
>
>
>
>
>

Involving zalpha-1 cosv(a zr+b)

>
>
>
>
>
>

Involving zn cosv(c zr+f z)

>
>

Involving zn cosv(c zr+f z+g)

>
>

Involving powers of the direct function and algebraic functions

Involving powers of cos and algebraic functions

Involving (a z+b)beta

>
>
>
>

Involving products of the direct function and a power function

Involving products of two direct functions and a power function

Involving zalpha-1cos(c z)cos(a z)

>
>
>
>

Involving zalpha-1cos(c z)cos(a z+b)

>

Involving zalpha-1cos(c z+d)cos(a z+b)

>

Involving zn cos(d z) cos(c zr)

>
>

Involving zn cos(d z+e) cos(c zr)

>
>

Involving zalpha-1 cos(b zr) cos(c zr)

>
>
>

Involving zn cos(d z) cos(c zr+g)

>
>

Involving zn cos(d z+e) cos(c zr+g)

>
>

Involving zalpha-1 cos(b zr) cos(c zr+g)

>
>
>

Involving zalpha-1 cos(b zr+e) cos(c zr+g)

>
>
>

Involving zn cos(d z) cos(c zr+f z)

>
>

Involving zn cos(d z+e) cos(c zr+f z)

>
>

Involving zn cos(b zr) cos(c zr+f z)

>
>

Involving zn cos(b zr+e) cos(c zr+f z)

>
>

Involving zn cos(b zr+d z+e) cos(c zr+f z)

>
>

Involving zn cos(d z) cos(c zr+f z+g)

>
>

Involving zn cos(d z+e) cos(c zr+f z+g)

>
>

Involving zn cos(b zr) cos(c zr+f z+g)

>
>

Involving zn cos(b zr+e) cos(c zr+f z+g)

>
>

Involving zn cos(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving zn cos(b zr+d z+e) cos(c zr+f z+g)

>
>

Involving products of several direct functions and a power function

Involving zalpha-1cos(a z) cos(b z) cos(c z)

>
>

Involving zalpha-1k=1ncos(ak z)

>
>

Involving products of powers of the direct function and a power function

Involving product of power of the direct function, the direct function and a power function

Involving zalpha-1cos(c z)cosnu(a z)

>
>

Involving zalpha-1cos(c z+d)cosv(a z)

>
>

Involving zalpha-1cos(c z)cosv(a z+b)

>
>

Involving zalpha-1cos(c z+d)cosv(a z+b)

>
>

Involving zn cos(b zr) cosv(c z)

>
>

Involving zn cos(b zr+e) cosv(c z)

>
>

Involving zn cos(b zr+d z) cosv(c z)

>
>

Involving zn cos(b zr+d z+e) cosv(c z)

>
>

Involving zn cos(b zr) cosv(f z+g)

>
>

Involving zn cos(b zr+e) cosv(f z+g)

>
>

Involving zn cos(b zr+d z) cosv(f z+g)

>
>

Involving zn cos(b zr+d z+e) cosv(f z+g)

>
>

Involving zn cos(b z) cosv(c zr)

>
>

Involving zn cos(d z+e) cosv(c zr)

>
>

Involving zalpha-1 cos(b zr) cosv(c zr)

>
>
>

Involving zalpha-1 cos(b zr+e) cosv(c zr)

>
>
>

Involving zn cos(b zr+d z) cosv(c zr)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr)

>
>

Involving zn cos(d z) cosv(c zr+g)

>
>

Involving zn cos(d z+e) cosv(c zr+g)

>
>

Involving zalpha-1 cos(b zr) cosv(c zr+g)

>
>
>

Involving zalpha-1 cos(b zr+e) cosv(c zr+g)

>
>
>

Involving zn cos(b zr+d z) cosv(c zr+g)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr+g)

>
>

Involving zn cos(d z) cosv(c zr+f z)

>
>

Involving zn cos(d z+e) cosv(c zr+f z)

>
>

Involving zn cos(b zr) cosv(c zr+f z)

>
>

Involving zn cos(b zr+e) cosv(c zr+f z)

>
>

Involving zn cos(b zr+d z) cosv(c zr+f z)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr+f z)

>
>

Involving zn cos(d z) cosv(c zr+f z+g)

>
>

Involving zn cos(d z+e) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr+e) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr+d z) cosv(c zr+f z+g)

>
>

Involving zn cos(b zr+d z+e) cosv(c zr+f z+g)

>
>

Involving product of powers of two direct functions and a power function

Involving zalpha-1cosmu(c z)cosv(a z)

>