|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.05.06.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryAi[x] == DiracDelta[x] + Sum[((-1)^k/(3^k k!))
D[DiracDelta[x], {x, 3 k}], {k, 1, Infinity}] /; Element[x, Reals]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryAi", "[", "x", "]"]], "\[Equal]", RowBox[List[RowBox[List["DiracDelta", "[", "x", "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List[SuperscriptBox["3", "k"], RowBox[List["k", "!"]]]]], RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["x", ",", RowBox[List["3", " ", "k"]]]], "}"]]], RowBox[List["DiracDelta", "[", "x", "]"]]]]]]]]]]]], "/;", RowBox[List["x", "\[Element]", "Reals"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> DiracDelta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mtext> </mtext> </mrow> <mrow> <msup> <mn> 3 </mn> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mrow> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> DiracDelta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> x </mi> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> ∈ </mo> <mi> ℝ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> AiryAi </ci> <ci> x </ci> </apply> <apply> <plus /> <apply> <ci> DiracDelta </ci> <ci> x </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> x </ci> <degree> <apply> <times /> <cn type='integer'> 3 </cn> <ci> k </ci> </apply> </degree> </bvar> <apply> <ci> DiracDelta </ci> <ci> x </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> x </ci> <ci> ℝ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryAi", "[", "x_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["DiracDelta", "[", "x", "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["x", ",", RowBox[List["3", " ", "k"]]]], "}"]]]]], RowBox[List["DiracDelta", "[", "x", "]"]]]]]], RowBox[List[SuperscriptBox["3", "k"], " ", RowBox[List["k", "!"]]]]]]]]], "/;", RowBox[List["x", "\[Element]", "Reals"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|