Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAi[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving elementary functions of the direct function > Involving products of the direct function > Power arguments





http://functions.wolfram.com/03.05.21.0040.01









  


  










Input Form





Integrate[AiryAi[(-a) z^r] AiryAi[a z^r], z] == (z MeijerG[{{1 - 1/(6 r)}, {1/6}}, {{0, 1/6, 1/3, 2/3}, {1/6, -(1/(6 r))}}, (a z^r)/(2^(1/3) 3^(2/3)), 1/6])/(12 2^(2/3) 3^(1/3) Pi^(3/2) r)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "r"]]], "]"]], " ", RowBox[List["AiryAi", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["z", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "-", FractionBox["1", RowBox[List["6", " ", "r"]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "6"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "6"], ",", FractionBox["1", "3"], ",", FractionBox["2", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", RowBox[List["-", FractionBox["1", RowBox[List["6", " ", "r"]]]]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]]], ",", FractionBox["1", "6"]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["12", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", "r"]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mi> z </mi> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;6&quot;]], RowBox[List[&quot;4&quot;, &quot;,&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], RowBox[List[RadicalBox[&quot;2&quot;, &quot;3&quot;], &quot; &quot;, SuperscriptBox[&quot;3&quot;, RowBox[List[&quot;2&quot;, &quot;/&quot;, &quot;3&quot;]]]]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;6&quot;, &quot; &quot;, &quot;r&quot;]]]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, RowBox[List[&quot;6&quot;, &quot; &quot;, &quot;r&quot;]]]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 6 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 6 </cn> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </list> <list> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> </list> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", "a_"]], " ", SuperscriptBox["z_", "r_"]]], "]"]], " ", RowBox[List["AiryAi", "[", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["z", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "-", FractionBox["1", RowBox[List["6", " ", "r"]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "6"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "6"], ",", FractionBox["1", "3"], ",", FractionBox["2", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", RowBox[List["-", FractionBox["1", RowBox[List["6", " ", "r"]]]]]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]]], ",", FractionBox["1", "6"]]], "]"]]]], RowBox[List["12", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", "r"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29