|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.05.21.0079.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Nest[Integrate[#1, {t, t, Infinity}] & , AiryAi[-t], n],
{t, 0, Infinity}] == (1/(23^((1/3) (n + 2)) Gamma[(n + 2)/3]))
Cos[(1/3) (n - 1) Pi]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List["Nest", "[", RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "t", "\[Infinity]"], RowBox[List["#", RowBox[List["\[DifferentialD]", "t"]]]]]], "&"]], ",", RowBox[List["AiryAi", "[", RowBox[List["-", "t"]], "]"]], ",", "n"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["23", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["n", "+", "2"]], ")"]]]]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["n", "+", "2"]], "3"], "]"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", "\[Pi]"]], "]"]], " "]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mstyle maxsize='4'> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> </mstyle> <mrow> <munder> <munder> <mrow> <msubsup> <mo> ∫ </mo> <mi> t </mi> <mi> ∞ </mi> </msubsup> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mi> t </mi> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> <mo> ⁢ </mo> <mo> … </mo> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ︸ </mo> </munder> <mrow> <mi> n </mi> <mo> - </mo> <mi> times </mi> </mrow> </munder> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 3 </mn> </mfrac> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mstyle maxsize='4'> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> </mstyle> <mrow> <munder> <munder> <mrow> <msubsup> <mo> ∫ </mo> <mi> t </mi> <mi> ∞ </mi> </msubsup> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mi> t </mi> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> <mo> ⁢ </mo> <mo> … </mo> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ︸ </mo> </munder> <mrow> <mi> n </mi> <mo> - </mo> <mi> times </mi> </mrow> </munder> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 3 </mn> </mfrac> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List["Nest", "[", RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "t_", "\[Infinity]"], RowBox[List["#1", RowBox[List["\[DifferentialD]", "t_"]]]]]], "&"]], ",", RowBox[List["AiryAi", "[", RowBox[List["-", "t_"]], "]"]], ",", "n_"]], "]"]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["23", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["n", "+", "2"]], ")"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", "\[Pi]"]], "]"]]]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["n", "+", "2"]], "3"], "]"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|