|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.05.22.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseFourierTransform[AiryAi[t], t, z] == (1/(48 Sqrt[2] Pi^(3/2)))
(48 E^((I z^3)/3) Pi + 3^(1/6) z^4 (2 Gamma[-(1/3)] + 9 Gamma[5/3])
HypergeometricPFQ[{1}, {7/6, 5/3}, -(z^6/36)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["InverseFourierTransform", "[", RowBox[List[RowBox[List["AiryAi", "[", "t", "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["48", " ", SqrtBox["2"], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["48", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "3"]]], "3"]], " ", "\[Pi]"]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], "+", RowBox[List["9", " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "6"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "6"], "36"]]]]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> ℱ </mi> <mi> t </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> [ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 6 </mn> </msup> <mn> 36 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["7", "6"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["5", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "6"], "36"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mfrac> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> InverseFourierTransform </ci> <apply> <ci> AiryAi </ci> <ci> t </ci> </apply> <ci> t </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <cn type='rational'> 7 <sep /> 6 </cn> <cn type='rational'> 5 <sep /> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 36 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <pi /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseFourierTransform", "[", RowBox[List[RowBox[List["AiryAi", "[", "t_", "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["48", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "3"]]], "3"]], " ", "\[Pi]"]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], "+", RowBox[List["9", " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "6"], ",", FractionBox["5", "3"]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "6"], "36"]]]]], "]"]]]]]], RowBox[List["48", " ", SqrtBox["2"], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|