|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.05.22.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MellinTransform[AiryAi[t], t, z] ==
(3^((1/6) (-7 + 4 z)) Gamma[z/3] Gamma[(1 + z)/3])/(2 Pi) /; Re[z] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List["AiryAi", "[", "t", "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["4", " ", "z"]]]], ")"]]]]], " ", RowBox[List["Gamma", "[", FractionBox["z", "3"], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "+", "z"]], "3"], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> ℳ </mi> <mi> t </mi> </msub> <mo> [ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mn> 6 </mn> </mfrac> <mtext> </mtext> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> ℳ </ci> <ci> t </ci> </apply> <apply> <ci> AiryAi </ci> <ci> t </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["MellinTransform", "[", RowBox[List[RowBox[List["AiryAi", "[", "t_", "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["4", " ", "z"]]]], ")"]]]]], " ", RowBox[List["Gamma", "[", FractionBox["z", "3"], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "+", "z"]], "3"], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|