Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAiPrime






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAiPrime[z] > Primary definition





http://functions.wolfram.com/03.07.02.0002.01









  


  










Input Form





AiryAiPrime[z] == (z^2 Hypergeometric0F1[5/3, z^3/9])/ (2 3^(2/3) Gamma[2/3]) - Hypergeometric0F1[1/3, z^3/9]/(3^(1/3) Gamma[1/3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["AiryAiPrime", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["5", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]], "-", FractionBox[RowBox[List[" ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["1", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> AiryAiPrime </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <cn type='rational'> 5 <sep /> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryAiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["5", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]], "-", FractionBox[RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["1", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29