|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.07.06.0033.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryAiPrime[z] \[Proportional]
(-(1/(3^(1/3) Gamma[1/3]))) (1 + z^3/3 + z^6/72 + O[z^9]) +
(z^2/(2 3^(2/3) Gamma[2/3])) (1 + z^3/15 + z^6/720 + O[z^9])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["AiryAiPrime", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "3"], "3"], "+", FractionBox[SuperscriptBox["z", "6"], "72"], "+", RowBox[List["O", "[", SuperscriptBox["z", "9"], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "2"], " "]], RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "3"], "15"], "+", FractionBox[SuperscriptBox["z", "6"], "720"], "+", RowBox[List["O", "[", SuperscriptBox["z", "9"], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> Ai </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 6 </mn> </msup> <mn> 72 </mn> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 15 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> z </mi> <mn> 6 </mn> </msup> <mn> 720 </mn> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> AiryAiPrime </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 72 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 15 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 720 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryAiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "3"], "3"], "+", FractionBox[SuperscriptBox["z", "6"], "72"], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "9"]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", "3"], "15"], "+", FractionBox[SuperscriptBox["z", "6"], "720"], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "9"]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|