| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.07.06.0026.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | AiryAiPrime[z] \[Proportional] (1/(2 Sqrt[3 Pi] (-z^3)^(7/12))) 
   (((z^2 - (-z^3)^(2/3)) Cos[(2 Sqrt[-z^3])/3 - Pi/4] - 
      Sqrt[3] (z^2 + (-z^3)^(2/3)) Cos[(2 Sqrt[-z^3])/3 + Pi/4]) 
     HypergeometricPFQ[{-(1/12), 5/12, 7/12, 13/12}, {1/2}, 9/(4 z^3)] - 
    (7/(48 Sqrt[-z^3])) ((-z^2 + (-z^3)^(2/3)) Cos[(2 Sqrt[-z^3])/3 + Pi/4] - 
      Sqrt[3] (z^2 + (-z^3)^(2/3)) Cos[(2 Sqrt[-z^3])/3 - Pi/4]) 
     HypergeometricPFQ[{5/12, 11/12, 13/12, 19/12}, {3/2}, 9/(4 z^3)]) /; 
 (Abs[z] -> Infinity) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryAiPrime", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["3", " ", "\[Pi]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["7", "/", "12"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], " ", ")"]], RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "-", FractionBox["\[Pi]", "4"]]], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "+", FractionBox["\[Pi]", "4"]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "12"]]], ",", FractionBox["5", "12"], ",", FractionBox["7", "12"], ",", FractionBox["13", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]], "-", RowBox[List[FractionBox["7", RowBox[List["48", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], " ", ")"]], RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "+", FractionBox["\[Pi]", "4"]]], "]"]]]], "-", RowBox[List[SqrtBox["3"], RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "-", FractionBox["\[Pi]", "4"]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "12"], ",", FractionBox["11", "12"], ",", FractionBox["13", "12"], ",", FractionBox["19", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> Ai </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 12 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mi> π </mi>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> + </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mn> 3 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mi> π </mi>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 12 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 5 </mn>  <mn> 12 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 7 </mn>  <mn> 12 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 13 </mn>  <mn> 12 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ; </mo>  <mfrac>  <mn> 9 </mn>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "12"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["5", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["13", "12"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 7 </mn>  <mrow>  <mn> 48 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mn> 3 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mi> π </mi>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> + </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mi> π </mi>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 12 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 11 </mn>  <mn> 12 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 13 </mn>  <mn> 12 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 19 </mn>  <mn> 12 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ; </mo>  <mfrac>  <mn> 9 </mn>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["11", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["13", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["19", "12"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> AiryAiPrime </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 3 </cn>  <pi />  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 7 <sep /> 12 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 12 </cn>  </apply>  <cn type='rational'> 5 <sep /> 12 </cn>  <cn type='rational'> 7 <sep /> 12 </cn>  <cn type='rational'> 13 <sep /> 12 </cn>  </list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  </list>  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 7 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 48 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 5 <sep /> 12 </cn>  <cn type='rational'> 11 <sep /> 12 </cn>  <cn type='rational'> 13 <sep /> 12 </cn>  <cn type='rational'> 19 <sep /> 12 </cn>  </list>  <list>  <cn type='rational'> 3 <sep /> 2 </cn>  </list>  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Rule </ci>  <apply>  <abs />  <ci> z </ci>  </apply>  <infinity />  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryAiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "-", FractionBox["\[Pi]", "4"]]], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "+", FractionBox["\[Pi]", "4"]]], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "12"]]], ",", FractionBox["5", "12"], ",", FractionBox["7", "12"], ",", FractionBox["13", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]], "-", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "+", FractionBox["\[Pi]", "4"]]], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "3"], "-", FractionBox["\[Pi]", "4"]]], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "12"], ",", FractionBox["11", "12"], ",", FractionBox["13", "12"], ",", FractionBox["19", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]], RowBox[List["48", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["3", " ", "\[Pi]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["7", "/", "12"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |