| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.07.21.0014.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[(Sqrt[z] AiryAiPrime[a z])/E^((2/3) (a z)^(3/2)), z] == 
 (1/(21 a^2 Sqrt[z] Gamma[1/3])) ((6 a^2 z^2 AiryAiPrime[a z] Gamma[1/3] + 
    2 Sqrt[a z] (-2 3^(2/3) E^((2/3) (a z)^(3/2)) - 
      (a^3 z^3 BesselI[-(5/3), (2/3) a^(3/2) z^(3/2)] Gamma[1/3])/
       (a^(3/2) z^(3/2))^(1/3) + a^2 z^2 (a^(3/2) z^(3/2))^(1/3) 
       BesselI[5/3, (2/3) a^(3/2) z^(3/2)] Gamma[1/3]))/E^((2/3) (a z)^(3/2))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox["z"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["2", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["AiryAiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["21", " ", SuperscriptBox["a", "2"], " ", SqrtBox["z"], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["2", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["AiryAiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["a", "3"], " ", SuperscriptBox["z", "3"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["5", "3"]]], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "3"], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Ai </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 21 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Ai </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mrow>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> a </mi>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mtext>    </mtext>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mn> 3 </mn>  </mroot>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> AiryAiPrime </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 21 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='rational'> 1 <sep /> 3 </cn>  <cn type='integer'> -2 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> AiryAiPrime </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> BesselI </ci>  <cn type='rational'> 5 <sep /> 3 </cn>  <apply>  <times />  <cn type='rational'> 2 <sep /> 3 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='rational'> 2 <sep /> 3 </cn>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> BesselI </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 3 </cn>  </apply>  <apply>  <times />  <cn type='rational'> 2 <sep /> 3 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SqrtBox["z_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", " ", "z_"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "2"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["AiryAiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["a", "3"], " ", SuperscriptBox["z", "3"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["5", "3"]]], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "3"], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["21", " ", SuperscriptBox["a", "2"], " ", SqrtBox["z"], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |