Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAiPrime






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAiPrime[z] > Integral transforms > Laplace transforms





http://functions.wolfram.com/03.07.22.0005.01









  


  










Input Form





LaplaceTransform[AiryAiPrime[t], t, z] == (1/(72 Pi)) ((z (-4 (-1)^(1/3) Sqrt[3] Gamma[1/3] Gamma[-(1/3), -(z^3/3)] + 9 (-3 I + Sqrt[3]) Gamma[5/3] Gamma[1/3, -(z^3/3)]))/E^(z^3/3))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["LaplaceTransform", "[", RowBox[List[RowBox[List["AiryAiPrime", "[", "t", "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["72", " ", "\[Pi]"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "3"], "3"]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SqrtBox["3"], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "3"], "3"]]]]], "]"]]]], "+", RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "3"], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "3"], "3"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#8466; </mi> <mi> t </mi> </msub> <mo> [ </mo> <mrow> <msup> <mi> Ai </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> ] </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mi> z </mi> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LaplaceTransform </ci> <apply> <ci> AiryAiPrime </ci> <ci> t </ci> </apply> <ci> t </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 72 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaplaceTransform", "[", RowBox[List[RowBox[List["AiryAiPrime", "[", "t_", "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox["z", "3"], "3"]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SqrtBox["3"], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "3"], "3"]]]]], "]"]]]], "+", RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "3"], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "3"], "3"]]]]], "]"]]]]]], ")"]]]], RowBox[List["72", " ", "\[Pi]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29