| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.06.06.0038.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | AiryBi[z] == Subscript[F, Infinity][z] /; 
 Subscript[F, n][z] == (1/(3^(1/6) Gamma[2/3])) 
     Sum[(1/(Pochhammer[2/3, k] k!)) (z^3/9)^k, {k, 0, n}] + 
    ((3^(1/6) z)/Gamma[1/3]) Sum[(1/(Pochhammer[4/3, k] k!)) (z^3/9)^k, 
      {k, 0, n}] == AiryBi[z] - (1/(3^(1/6) Gamma[2/3])) 
     ((z^3/9)^(n + 1)/((n + 1)! Pochhammer[2/3, n + 1])) 
     HypergeometricPFQ[{1}, {n + 2, n + 5/3}, z^3/9] - 
    ((3^(1/6) z)/Gamma[1/3]) ((z^3/9)^(n + 1)/
      ((n + 1)! Pochhammer[4/3, n + 1])) HypergeometricPFQ[{1}, 
      {n + 2, n + 7/3}, z^3/9] && Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "\[Equal]", RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[" ", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["2", "3"], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], "k"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], "z"]], " "]], RowBox[List[" ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["4", "3"], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], "k"]]]]]]]]], "\[Equal]", RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "-", RowBox[List[FractionBox["1", RowBox[List[" ", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]]]], FractionBox[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["n", "+", "1"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["2", "3"], ",", RowBox[List["n", "+", "1"]]]], "]"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["n", "+", "2"]], ",", RowBox[List["n", "+", FractionBox["5", "3"]]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], "z"]], " "]], RowBox[List[" ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["n", "+", "1"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["4", "3"], ",", RowBox[List["n", "+", "1"]]]], "]"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["n", "+", "2"]], ",", RowBox[List["n", "+", FractionBox["7", "3"]]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]]]]]], StyleBox[")", Rule[FontWeight, "Plain"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> Bi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msub>  <mi> F </mi>  <mi> ∞ </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> F </mi>  <mi> n </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mroot>  <mn> 3 </mn>  <mn> 6 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mroot>  <mn> 3 </mn>  <mn> 6 </mn>  </mroot>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["4", "3"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mi> Bi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mroot>  <mn> 3 </mn>  <mn> 6 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["n", "+", "1"]]], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> ; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["5", "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "3"], "9"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mroot>  <mn> 3 </mn>  <mn> 6 </mn>  </mroot>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["4", "3"], ")"]], RowBox[List["n", "+", "1"]]], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> ; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 7 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["7", "3"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox["z", "3"], "9"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> AiryBi </ci>  <ci> z </ci>  </apply>  <apply>  <apply>  <ci> Subscript </ci>  <ci> F </ci>  <infinity />  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <apply>  <apply>  <ci> Subscript </ci>  <ci> F </ci>  <ci> n </ci>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 6 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  <ci> k </ci>  </apply>  <apply>  <factorial />  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 6 </cn>  </apply>  <ci> z </ci>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 4 <sep /> 3 </cn>  <ci> k </ci>  </apply>  <apply>  <factorial />  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> AiryBi </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 6 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 5 <sep /> 3 </cn>  </apply>  </list>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 6 </cn>  </apply>  <ci> z </ci>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 4 <sep /> 3 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='rational'> 7 <sep /> 3 </cn>  </apply>  </list>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <integers />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], "k"], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["2", "3"], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", "z"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], "k"], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["4", "3"], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]]], "\[Equal]", RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["n", "+", "2"]], ",", RowBox[List["n", "+", FractionBox["5", "3"]]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["2", "3"], ",", RowBox[List["n", "+", "1"]]]], "]"]]]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", "z"]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["n", "+", "1"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["n", "+", "2"]], ",", RowBox[List["n", "+", FractionBox["7", "3"]]]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["4", "3"], ",", RowBox[List["n", "+", "1"]]]], "]"]]]], ")"]]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |