|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.06.06.0046.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryBi[z] \[Proportional] (1/((-z^3)^(5/12) (8 Sqrt[Pi])))
((Sqrt[2]/z^(3/2)) (((-1 + Sqrt[3]) z^(5/2) + (1 + Sqrt[3]) z^(3/2)
(-z^3)^(1/3) - (1 + Sqrt[3]) z Sqrt[-z^3] - (-1 + Sqrt[3])
(-z^3)^(5/6))/E^((2 z^(3/2))/3) + E^((2 z^(3/2))/3)
((-1 + Sqrt[3]) z^(5/2) + (1 + Sqrt[3]) z^(3/2) (-z^3)^(1/3) +
(1 + Sqrt[3]) z Sqrt[-z^3] + (-1 + Sqrt[3]) (-z^3)^(5/6)))
HypergeometricPFQ[{1/12, 5/12, 7/12, 11/12}, {1/2}, 9/(4 z^3)] +
(5/(24 Sqrt[2] z^3)) (((-(-1 + Sqrt[3])) z^(5/2) - (1 + Sqrt[3]) z^(3/2)
(-z^3)^(1/3) + (1 + Sqrt[3]) z Sqrt[-z^3] + (-1 + Sqrt[3])
(-z^3)^(5/6))/E^((2 z^(3/2))/3) + E^((2 z^(3/2))/3)
((-1 + Sqrt[3]) z^(5/2) + (1 + Sqrt[3]) z^(3/2) (-z^3)^(1/3) +
(1 + Sqrt[3]) z Sqrt[-z^3] + (-1 + Sqrt[3]) (-z^3)^(5/6)))
HypergeometricPFQ[{7/12, 11/12, 13/12, 17/12}, {3/2}, 9/(4 z^3)]) /;
(Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List[RowBox[List["-", "5"]], "/", "12"]]], RowBox[List["8", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[SqrtBox["2"], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "12"], ",", FractionBox["5", "12"], ",", FractionBox["7", "12"], ",", FractionBox["11", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]], "+", RowBox[List[FractionBox["5", RowBox[List["24", " ", SqrtBox["2"], " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]]]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "12"], ",", FractionBox["11", "12"], ",", FractionBox["13", "12"], ",", FractionBox["17", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mtext> </mtext> </mrow> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 12 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 12 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 12 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 9 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["5", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["11", "12"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 5 </mn> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 7 </mn> <mn> 12 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 12 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 13 </mn> <mn> 12 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 17 </mn> <mn> 12 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 9 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["7", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["11", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["13", "12"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["17", "12"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> AiryBi </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> -5 <sep /> 12 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 12 </cn> <cn type='rational'> 5 <sep /> 12 </cn> <cn type='rational'> 7 <sep /> 12 </cn> <cn type='rational'> 11 <sep /> 12 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 7 <sep /> 12 </cn> <cn type='rational'> 11 <sep /> 12 </cn> <cn type='rational'> 13 <sep /> 12 </cn> <cn type='rational'> 17 <sep /> 12 </cn> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List[RowBox[List["-", "5"]], "/", "12"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "12"], ",", FractionBox["5", "12"], ",", FractionBox["7", "12"], ",", FractionBox["11", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]]]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "12"], ",", FractionBox["11", "12"], ",", FractionBox["13", "12"], ",", FractionBox["17", "12"]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]]]], "]"]]]], RowBox[List["24", " ", SqrtBox["2"], " ", SuperscriptBox["z", "3"]]]]]], ")"]]]], RowBox[List["8", " ", SqrtBox["\[Pi]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|