  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.06.06.0016.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    AiryBi[z] == (Pi/3^(5/6)) 
  (z Sum[Residue[(1/((z^3/9)^s (Gamma[1/2 + s] Gamma[4/3 - s] 
          Gamma[1/2 - s]))) Gamma[s], {s, -j}], {j, 0, Infinity}] + 
   3^(2/3) Sum[Residue[(1/((z^3/9)^s (Gamma[1/2 + s] Gamma[2/3 - s] 
          Gamma[1/2 - s]))) Gamma[s], {s, -j}], {j, 0, Infinity}]) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["AiryBi", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", SuperscriptBox["3", RowBox[List["5", "/", "6"]]]], RowBox[List["(", RowBox[List[RowBox[List["z", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["-", "s"]]], RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", "s"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s"]], "]"]]]]]]], RowBox[List["Gamma", "[", "s", "]"]]]], " ", ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]]]], "]"]]]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["-", "s"]]], " "]], RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "3"], "-", "s"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s"]], "]"]]]]]]], RowBox[List["Gamma", "[", "s", "]"]]]], " ", ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]]]], "]"]]]]]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mi> Bi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mtext>    </mtext>  </mrow>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 6 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mrow>  <msub>  <mi> res </mi>  <mi> s </mi>  </msub>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> s </mi>  </mrow>  </msup>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> s </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mrow>  <msub>  <mi> res </mi>  <mi> s </mi>  </msub>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mn> 9 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> s </mi>  </mrow>  </msup>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> s </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> s </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> AiryBi </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <power />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 5 <sep /> 6 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> res </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> s </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='rational'> 4 <sep /> 3 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <apply>  <ci> Subscript </ci>  <ci> res </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 9 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> s </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='rational'> 2 <sep /> 3 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <ci> s </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBi", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", "s", "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s"]], "]"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]]]], "]"]]]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "3"], "9"], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", "s", "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "3"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s"]], "]"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]]]], "]"]]]]]]]], ")"]]]], SuperscriptBox["3", RowBox[List["5", "/", "6"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |