Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryBi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryBi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving power function > Involving power > Power arguments





http://functions.wolfram.com/03.06.21.0009.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) AiryBi[a z^r], z] == (1/(3 3^(5/6) r)) (z^\[Alpha] (3^(2/3) Gamma[\[Alpha]/(3 r)] HypergeometricPFQRegularized[{\[Alpha]/(3 r)}, {2/3, 1 + \[Alpha]/(3 r)}, (1/9) a^3 z^(3 r)] + a z^r Gamma[(r + \[Alpha])/(3 r)] HypergeometricPFQRegularized[ {(r + \[Alpha])/(3 r)}, {4/3, (1/3) (4 + \[Alpha]/r)}, (1/9) a^3 z^(3 r)]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["AiryBi", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["3", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", "r"]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["\[Alpha]", RowBox[List["3", " ", "r"]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", FractionBox["\[Alpha]", RowBox[List["3", " ", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["1", "9"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["z", RowBox[List["3", " ", "r"]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["3", " ", "r"]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["3", " ", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["4", "3"], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["4", "+", FractionBox["\[Alpha]", "r"]]], ")"]]]]]], "}"]], ",", RowBox[List[FractionBox["1", "9"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["z", RowBox[List["3", " ", "r"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> r </mi> <mo> + </mo> <mi> &#945; </mi> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#945; </mi> <mi> r </mi> </mfrac> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 9 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;r&quot;, &quot;+&quot;, &quot;\[Alpha]&quot;]], RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[&quot;\[Alpha]&quot;, &quot;r&quot;], &quot;+&quot;, &quot;4&quot;]], &quot;)&quot;]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;9&quot;], &quot; &quot;, SuperscriptBox[&quot;a&quot;, &quot;3&quot;], &quot; &quot;, SuperscriptBox[&quot;z&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> &#945; </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#945; </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> &#945; </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 9 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;\[Alpha]&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;\[Alpha]&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;9&quot;], &quot; &quot;, SuperscriptBox[&quot;a&quot;, &quot;3&quot;], &quot; &quot;, SuperscriptBox[&quot;z&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <times /> <apply> <plus /> <ci> r </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <plus /> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 9 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <plus /> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 9 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["AiryBi", "[", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["\[Alpha]", RowBox[List["3", " ", "r"]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", FractionBox["\[Alpha]", RowBox[List["3", " ", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["1", "9"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["z", RowBox[List["3", " ", "r"]]]]]]], "]"]]]], "+", RowBox[List["a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["3", " ", "r"]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["r", "+", "\[Alpha]"]], RowBox[List["3", " ", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["4", "3"], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["4", "+", FractionBox["\[Alpha]", "r"]]], ")"]]]]]], "}"]], ",", RowBox[List[FractionBox["1", "9"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["z", RowBox[List["3", " ", "r"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["3", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", "r"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29