Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryBi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryBi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving sinh > Power arguments





http://functions.wolfram.com/03.06.21.0023.01









  


  










Input Form





Integrate[Sinh[b + (2/3) (a z^r)^(3/2)] AiryBi[a z^r], z] == (z ((-3^(2/3)) (1 + r) Gamma[4/3] HypergeometricPFQ[{1/6, 2/(3 r)}, {1/3, 1 + 2/(3 r)}, (-(4/3)) (a z^r)^(3/2)] + 3^(2/3) E^(2 b) (1 + r) Gamma[4/3] HypergeometricPFQ[{1/6, 2/(3 r)}, {1/3, 1 + 2/(3 r)}, (4/3) (a z^r)^(3/2)] - a z^r Gamma[2/3] (HypergeometricPFQ[{5/6, 2/3 + 2/(3 r)}, {5/3, 5/3 + 2/(3 r)}, (-(4/3)) (a z^r)^(3/2)] - E^(2 b) HypergeometricPFQ[{5/6, 2/3 + 2/(3 r)}, {5/3, 5/3 + 2/(3 r)}, (4/3) (a z^r)^(3/2)])))/E^b/(2 3^(5/6) (1 + r) Gamma[2/3] Gamma[4/3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b", "+", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]], RowBox[List["AiryBi", "[", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "b"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", "r"]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", RowBox[List["3", " ", "r"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", RowBox[List["1", "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b"]]], " ", RowBox[List["(", RowBox[List["1", "+", "r"]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", RowBox[List["3", " ", "r"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", RowBox[List["1", "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", RowBox[List[FractionBox["2", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", RowBox[List[FractionBox["5", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", RowBox[List[FractionBox["2", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", RowBox[List[FractionBox["5", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["(", RowBox[List["1", "+", "r"]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;2&quot;, &quot;3&quot;], &quot;+&quot;, FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;5&quot;, &quot;3&quot;], &quot;+&quot;, FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;4&quot;]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;2&quot;, &quot;3&quot;], &quot;+&quot;, FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;5&quot;, &quot;3&quot;], &quot;+&quot;, FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;4&quot;, &quot;3&quot;], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;+&quot;, FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;4&quot;, &quot;3&quot;], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 2 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;+&quot;, FractionBox[&quot;2&quot;, RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;r&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;1&quot;, &quot;3&quot;], &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;4&quot;]], &quot;)&quot;]], &quot; &quot;, SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], &quot;)&quot;]], RowBox[List[&quot;3&quot;, &quot;/&quot;, &quot;2&quot;]]]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 5 <sep /> 6 </cn> <apply> <plus /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 5 <sep /> 3 </cn> <apply> <plus /> <cn type='rational'> 5 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 5 <sep /> 6 </cn> <apply> <plus /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='rational'> 5 <sep /> 3 </cn> <apply> <plus /> <cn type='rational'> 5 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b_", "+", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["AiryBi", "[", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "b"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["3", RowBox[List["2", "/", "3"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", "r"]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", RowBox[List["3", " ", "r"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", RowBox[List["1", "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b"]]], " ", RowBox[List["(", RowBox[List["1", "+", "r"]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "6"], ",", FractionBox["2", RowBox[List["3", " ", "r"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", RowBox[List["1", "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]], "-", RowBox[List["a", " ", SuperscriptBox["z", "r"], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", RowBox[List[FractionBox["2", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", RowBox[List[FractionBox["5", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["-", "4"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "6"], ",", RowBox[List[FractionBox["2", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "3"], ",", RowBox[List[FractionBox["5", "3"], "+", FractionBox["2", RowBox[List["3", " ", "r"]]]]]]], "}"]], ",", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["(", RowBox[List["1", "+", "r"]], ")"]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29