|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.08.06.0044.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryBiPrime[z] \[Proportional] (1/(4 Sqrt[2 Pi] z (-z^3)^(5/12)))
((((-(-1 + Sqrt[3])) z^(5/2) - (1 + Sqrt[3]) z^(3/2) (-z^3)^(1/3) +
(1 + Sqrt[3]) z Sqrt[-z^3] + (-1 + Sqrt[3]) (-z^3)^(5/6))/
E^((2 z^(3/2))/3) + E^((2 z^(3/2))/3) ((-1 + Sqrt[3]) z^(5/2) +
(1 + Sqrt[3]) z^(3/2) (-z^3)^(1/3) + (1 + Sqrt[3]) z Sqrt[-z^3] +
(-1 + Sqrt[3]) (-z^3)^(5/6)))
(Sum[((Pochhammer[-(1/12), k] Pochhammer[5/12, k] Pochhammer[7/12, k]
Pochhammer[13/12, k])/(k! Pochhammer[1/2, k])) (9/(4 z^3))^k,
{k, 0, n}] + O[1/z^(3 n + 3)]) - (7/(96 z^(3/2)))
(((-1 + Sqrt[3]) z^(5/2) + (1 + Sqrt[3]) z^(3/2) (-z^3)^(1/3) -
(1 + Sqrt[3]) z Sqrt[-z^3] - (-1 + Sqrt[3]) (-z^3)^(5/6))/
E^((2 z^(3/2))/3) + E^((2 z^(3/2))/3) ((-1 + Sqrt[3]) z^(5/2) +
(1 + Sqrt[3]) z^(3/2) (-z^3)^(1/3) + (1 + Sqrt[3]) z Sqrt[-z^3] +
(-1 + Sqrt[3]) (-z^3)^(5/6)))
(Sum[((Pochhammer[5/12, k] Pochhammer[11/12, k] Pochhammer[13/12, k]
Pochhammer[19/12, k])/(k! Pochhammer[3/2, k])) (9/(4 z^3))^k,
{k, 0, n}] + O[1/z^(3 n + 3)])) /; (Abs[z] -> Infinity) &&
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryBiPrime", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "12"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]]]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["Sum", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["1", "12"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["7", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["13", "12"], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], ")"]], "k"]]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "n"]], "}"]]]], "]"]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List[RowBox[List["3", "n"]], "+", "3"]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["7", RowBox[List["96", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["Sum", "[", " ", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["11", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["13", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["19", "12"], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], ")"]], "k"]]], ",", RowBox[List["{", RowBox[List["k", ",", "0", ",", "n"]], "}"]]]], "]"]], "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List[RowBox[List["3", "n"]], "+", "3"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 12 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "12"]]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["5", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 7 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["7", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 13 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["13", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 9 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 7 </mn> <mrow> <mn> 96 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["5", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 11 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["11", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 13 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["13", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 19 </mn> <mn> 12 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["19", "12"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 9 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> AiryBiPrime </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 12 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 12 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 5 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 7 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 13 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 96 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 5 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 11 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 13 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 19 <sep /> 12 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]]]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["1", "12"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["7", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["13", "12"], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]]]]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", RowBox[List[RowBox[List["3", " ", "n"]], "+", "3"]]]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]], " ", "z", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "3"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["3"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "6"]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["11", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["13", "12"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["19", "12"], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["9", RowBox[List["4", " ", SuperscriptBox["z", "3"]]]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]]]]]]], "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", RowBox[List[RowBox[List["3", " ", "n"]], "+", "3"]]]], "]"]]]], ")"]]]], RowBox[List["96", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["5", "/", "12"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|