|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.08.07.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryBiPrime[z] == (1/Pi) Integrate[t (E^(z t - t^3/3) + Cos[t^3/3 + z t]),
{t, 0, Infinity}] /; z < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["AiryBiPrime", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox["1", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List["t", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["z", " ", "t"]], "-", FractionBox[SuperscriptBox["t", "3"], "3"]]]], "+", RowBox[List["Cos", "[", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "+", RowBox[List["z", " ", "t"]]]], "]"]]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", " ", RowBox[List["z", "<", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> π </mi> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <mi> t </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> t </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mi> t </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mi> t </mi> </mrow> <mo> - </mo> <mfrac> <msup> <mi> t </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> AiryBiPrime </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <ci> t </ci> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <ci> t </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> z </ci> <ci> t </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List["t", " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["z", " ", "t"]], "-", FractionBox[SuperscriptBox["t", "3"], "3"]]]], "+", RowBox[List["Cos", "[", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "+", RowBox[List["z", " ", "t"]]]], "]"]]]], ")"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Pi]"], "/;", RowBox[List["z", "<", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|