Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryBiPrime






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryBiPrime[z] > Integral representations > Contour integral representations





http://functions.wolfram.com/03.08.07.0002.01









  


  










Input Form





AiryBiPrime[z] == (-(1/(2 Pi))) Integrate[t Exp[t^3/3 - z t], {t, -Infinity, Infinity E^((Pi I)/3)}] - (1/(2 Pi)) Integrate[t Exp[t^3/3 - z t], {t, -Infinity, \[Infinity]\[ExponentialE]^(-((Pi I)/3))}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["AiryBiPrime", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", "\[Pi]"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List[RowBox[List["-", "\[Infinity]"]], " "]], RowBox[List["\[Infinity]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]]]], RowBox[List["t", " ", RowBox[List["Exp", "[", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", "\[Pi]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List[RowBox[List["-", "\[Infinity]"]], " "]], SuperscriptBox["\[Infinity]\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]]]], RowBox[List["t", " ", RowBox[List["Exp", "[", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> <mrow> <mi> &#8734; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 3 </mn> </mfrac> </msup> </mrow> </msubsup> <mrow> <mrow> <mi> t </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <msup> <mi> t </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> <msup> <mi> &#8734;&#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mtext> </mtext> </mrow> </msup> </msubsup> <mrow> <mrow> <mi> t </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <msup> <mi> t </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> AiryBiPrime </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <apply> <times /> <infinity /> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </uplimit> <apply> <times /> <ci> t </ci> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <apply> <power /> <ci> &#8734;&#8519; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </uplimit> <apply> <times /> <ci> t </ci> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> t </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <ci> t </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], RowBox[List["\[Infinity]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]]]], RowBox[List[RowBox[List["t", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], SuperscriptBox["\[Infinity]\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]]]], RowBox[List[RowBox[List["t", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], RowBox[List["2", " ", "\[Pi]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29