| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.08.07.0002.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | AiryBiPrime[z] == (-(1/(2 Pi))) Integrate[t Exp[t^3/3 - z t], 
    {t, -Infinity, Infinity E^((Pi I)/3)}] - 
  (1/(2 Pi)) Integrate[t Exp[t^3/3 - z t], {t, -Infinity, 
     \[Infinity]\[ExponentialE]^(-((Pi I)/3))}] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["AiryBiPrime", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", "\[Pi]"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List[RowBox[List["-", "\[Infinity]"]], " "]], RowBox[List["\[Infinity]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]]]], RowBox[List["t", " ", RowBox[List["Exp", "[", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", "\[Pi]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List[RowBox[List["-", "\[Infinity]"]], " "]], SuperscriptBox["\[Infinity]\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]]]], RowBox[List["t", " ", RowBox[List["Exp", "[", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> Bi </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mrow>  <mo> - </mo>  <mi> ∞ </mi>  </mrow>  <mrow>  <mi> ∞ </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  <mn> 3 </mn>  </mfrac>  </msup>  </mrow>  </msubsup>  <mrow>  <mrow>  <mi> t </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <msup>  <mi> t </mi>  <mn> 3 </mn>  </msup>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mi> t </mi>  </mrow>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mrow>  <mo> - </mo>  <mi> ∞ </mi>  </mrow>  <msup>  <mi> ∞ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  <mn> 3 </mn>  </mfrac>  </mrow>  <mtext>   </mtext>  </mrow>  </msup>  </msubsup>  <mrow>  <mrow>  <mi> t </mi>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <msup>  <mi> t </mi>  <mn> 3 </mn>  </msup>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mi> t </mi>  </mrow>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> t </mi>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> AiryBiPrime </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <apply>  <times />  <cn type='integer'> -1 </cn>  <infinity />  </apply>  </lowlimit>  <uplimit>  <apply>  <times />  <infinity />  <apply>  <power />  <exponentiale />  <apply>  <times />  <pi />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <ci> t </ci>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> z </ci>  <ci> t </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <int />  <bvar>  <ci> t </ci>  </bvar>  <lowlimit>  <apply>  <times />  <cn type='integer'> -1 </cn>  <infinity />  </apply>  </lowlimit>  <uplimit>  <apply>  <power />  <ci> ∞ⅇ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <ci> t </ci>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> t </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> z </ci>  <ci> t </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AiryBiPrime", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], RowBox[List["\[Infinity]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "3"]]]]], RowBox[List[RowBox[List["t", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], SuperscriptBox["\[Infinity]\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]]]], RowBox[List[RowBox[List["t", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[SuperscriptBox["t", "3"], "3"], "-", RowBox[List["z", " ", "t"]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], RowBox[List["2", " ", "\[Pi]"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |