|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.08.21.0020.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sinh[b + (2/3) (a z)^(3/2)] AiryBiPrime[a z], z] ==
(E^(-b - (2/3) (a z)^(3/2)) (-6 (1 + E^(2 b + (4/3) (a z)^(3/2)))
(a z)^(3/2) (a^(3/2) z^(3/2))^(2/3) AiryBi[a z] Gamma[5/3] +
15 a (-1 + E^(2 b + (4/3) (a z)^(3/2))) z (a^(3/2) z^(3/2))^(2/3)
AiryBiPrime[a z] Gamma[5/3] -
Sqrt[3] (3 a^3 (-1 + E^(2 b + (4/3) (a z)^(3/2))) z^3
BesselI[-(4/3), (2/3) a^(3/2) z^(3/2)] Gamma[5/3] +
(a^(3/2) z^(3/2))^(1/3) (2 3^(1/3) E^((2/3) (a z)^(3/2)) (-1 + E^(2 b))
(a^(3/2) z^(3/2))^(1/3) + 3 a^(5/2)
(-1 + E^(2 b + (4/3) (a z)^(3/2))) z^(5/2) BesselI[4/3,
(2/3) a^(3/2) z^(3/2)] Gamma[5/3]))))/
(30 a (a^(3/2) z^(3/2))^(2/3) Gamma[5/3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b", "+", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]], RowBox[List["AiryBiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["AiryBi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], "+", RowBox[List["15", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["3", " ", SuperscriptBox["a", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["4", "3"], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["30", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </msub> <mo> ( </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <plus /> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 30 </cn> <ci> a </ci> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -6 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <ci> a </ci> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b_", "+", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", " ", "z_"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["AiryBi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], "+", RowBox[List["15", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], "-", RowBox[List[SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["4", "3"]]], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List["3", " ", SuperscriptBox["a", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b"]], "+", RowBox[List[FractionBox["4", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["4", "3"], ",", RowBox[List[FractionBox["2", "3"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["30", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["Gamma", "[", FractionBox["5", "3"], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|