|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.08.26.0010.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AiryBiPrime[z]^2 == (2/3)^(1/3) Sqrt[Pi] z
(MeijerG[{{5/6}, {0, 1/2}}, {{-(1/3), 1/3}, {0, 1/2, 1}}, (2/3)^(2/3) z,
1/3] + MeijerG[{{5/6}, {2/3, 7/6}}, {{1/3, 1}, {-(1/3), 2/3, 7/6}},
(2/3)^(2/3) z, 1/3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SuperscriptBox[RowBox[List["AiryBiPrime", "[", "z", "]"]], "2"], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["1", "/", "3"]]], " ", SqrtBox["\[Pi]"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["5", "6"], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", "1"]], "}"]]]], "}"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["2", "/", "3"]]], " ", "z"]], ",", FractionBox["1", "3"]]], "]"]], "+", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["5", "6"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["7", "6"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["2", "3"], ",", FractionBox["7", "6"]]], "}"]]]], "}"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["2", "/", "3"]]], " ", "z"]], ",", FractionBox["1", "3"]]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </msup> <mo> ⩵ </mo> <mrow> <mroot> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "5"]], RowBox[List["2", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[TagBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["2", "/", "3"]]], " ", "z"]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "3"], MeijerG, Rule[Editable, True]]]], MeijerG], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["5", "6"], MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "3"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "3"], MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["3", ",", "5"]], RowBox[List["2", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[TagBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["2", "/", "3"]]], " ", "z"]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "3"], MeijerG, Rule[Editable, True]]]], MeijerG], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox["5", "6"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["2", "3"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["7", "6"], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[FractionBox["1", "3"], MeijerG, Rule[Editable, True]], ",", TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["1", "3"]]], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["2", "3"], MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["7", "6"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <power /> <apply> <times /> <apply> <partialdiff /> <ci> Bi </ci> </apply> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <plus /> <apply> <ci> MeijerG </ci> <list> <list> <cn type='rational'> 5 <sep /> 6 </cn> </list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> </list> <list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> </list> </list> <apply> <times /> <apply> <power /> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <ci> MeijerG </ci> <list> <list> <cn type='rational'> 5 <sep /> 6 </cn> </list> <list> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 7 <sep /> 6 </cn> </list> </list> <list> <list> <cn type='rational'> 1 <sep /> 3 </cn> <cn type='integer'> 1 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 7 <sep /> 6 </cn> </list> </list> <apply> <times /> <apply> <power /> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["AiryBiPrime", "[", "z_", "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["1", "/", "3"]]], " ", SqrtBox["\[Pi]"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["5", "6"], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["1", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", "1"]], "}"]]]], "}"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["2", "/", "3"]]], " ", "z"]], ",", FractionBox["1", "3"]]], "]"]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["5", "6"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["7", "6"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "3"], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["2", "3"], ",", FractionBox["7", "6"]]], "}"]]]], "}"]], ",", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], RowBox[List["2", "/", "3"]]], " ", "z"]], ",", FractionBox["1", "3"]]], "]"]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|