|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.02.03.0040.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BesselI[\[Nu], DirectedInfinity[E^(I \[Lambda])]] ==
Piecewise[{{0, Abs[\[Lambda]] == Pi/2}}, ComplexInfinity] /;
Im[\[Lambda]] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", RowBox[List["DirectedInfinity", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Lambda]"]]], "]"]]]], "]"]], "\[Equal]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List["{", RowBox[List["0", ",", RowBox[List[RowBox[List["Abs", "[", "\[Lambda]", "]"]], "\[Equal]", RowBox[List["\[Pi]", "/", "2"]]]]]], "}"]], "}"]], ",", " ", "ComplexInfinity"]], "]"]]]], "/;", RowBox[List[RowBox[List["Im", "[", "\[Lambda]", "]"]], "\[Equal]", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> I </mi> <mi> ν </mi> </msub> <mo> ( </mo> <semantics> <mrow> <mtext> </mtext> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> λ </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> DirectedInfinity </ci> <cn type='complex-cartesian'> 1 <sep /> 1 </cn> </apply> </annotation-xml> </semantics> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mo>  </mo> <mtable> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> λ </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo>  </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> λ </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BesselI </ci> <ci> ν </ci> <apply> <ci> DirectedInfinity </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> </apply> </apply> <piecewise> <piece> <cn type='integer'> 0 </cn> <apply> <eq /> <apply> <abs /> <ci> λ </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </piece> <otherwise> <apply> <ci> OverTilde </ci> <infinity /> </apply> </otherwise> </piecewise> </apply> <apply> <eq /> <apply> <imaginary /> <ci> λ </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselI", "[", RowBox[List["\[Nu]_", ",", RowBox[List["DirectedInfinity", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Lambda]_"]]], "]"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List["0", RowBox[List[RowBox[List["Abs", "[", "\[Lambda]", "]"]], "\[Equal]", FractionBox["\[Pi]", "2"]]]], List["ComplexInfinity", TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List[RowBox[List["Im", "[", "\[Lambda]", "]"]], "\[Equal]", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|