|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.02.06.0085.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BesselI[\[Nu], z] \[Proportional] (z^\[Nu]/((I z)^\[Nu] Sqrt[2 Pi]))
(((E^(I Pi \[Nu])/Sqrt[(-I) z]) (1 + Sqrt[z^2]/z)
Cosh[z - (I Pi (1 + 2 \[Nu]))/4] + (1/Sqrt[I z]) (1 - Sqrt[z^2]/z)
Cosh[z + (I Pi (1 + 2 \[Nu]))/4]) (1 + O[1/z^2]) +
((1 - 4 \[Nu]^2)/(8 z)) ((E^(I Pi \[Nu])/Sqrt[(-I) z]) (1 + Sqrt[z^2]/z)
Sinh[z - (I Pi (1 + 2 \[Nu]))/4] + (1/Sqrt[I z]) (1 - Sqrt[z^2]/z)
Sinh[z + (I Pi (1 + 2 \[Nu]))/4]) (1 + O[1/z^2])) /;
(Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"], " "]], SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " "]], SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["z", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "4"]]], "]"]]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "4"]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], RowBox[List["8", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " "]], SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["z", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "4"]]], "]"]]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "4"]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "2"]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> I </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> </mrow> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BesselI </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <cosh /> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cosh /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <sinh /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselI", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["z", "\[Nu]"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["z", "-", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["z", "+", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "2"]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["z", "-", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["z", "+", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "]"]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["8", " ", "z"]]]]], ")"]]]], SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|