|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.02.21.0085.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(\[Alpha] - 1) BesselJ[\[Nu], a z^r] BesselI[\[Nu], a z^r], z] ==
(1/r) (2^(-2 - 3 \[Nu]) Sqrt[Pi] z^\[Alpha] (a z^r)^(2 \[Nu])
Gamma[(\[Alpha] + 2 r \[Nu])/(4 r)] HypergeometricPFQRegularized[
{(\[Alpha] + 2 r \[Nu])/(4 r)}, {1 + \[Nu], (1 + \[Nu])/2, (2 + \[Nu])/2,
(1/4) (4 + \[Alpha]/r + 2 \[Nu])}, (-(1/64)) a^4 z^(4 r)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "r"], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", "\[Nu]"]]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], RowBox[List["4", " ", "r"]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], RowBox[List["4", " ", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["4", "+", FractionBox["\[Alpha]", "r"], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "64"]]], " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]]]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mi> r </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> α </mi> <mi> r </mi> </mfrac> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 64 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["4", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[FractionBox[RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], RowBox[List["4", " ", "r"]]], HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "1"]], "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["\[Nu]", "+", "2"]], "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[FractionBox["\[Alpha]", "r"], "+", RowBox[List["2", " ", "\[Nu]"]], "+", "4"]], ")"]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", FractionBox["1", "64"]]], " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <ci> ν </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <ci> BesselI </ci> <ci> ν </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <ci> ν </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> α </ci> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <times /> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 64 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", "\[Nu]"]]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], RowBox[List["4", " ", "r"]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "r", " ", "\[Nu]"]]]], RowBox[List["4", " ", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["4", "+", FractionBox["\[Alpha]", "r"], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "64"]]], " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["z", RowBox[List["4", " ", "r"]]]]]]], "]"]]]], "r"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|