Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKer[nu,z] > Series representations > Generalized power series > Expansions at nu==+-n





http://functions.wolfram.com/03.20.06.0001.01









  


  










Input Form





KelvinKer[\[Nu], z] \[Proportional] KelvinKer[n, z] + ((Pi/2) KelvinKei[n, z] - (Pi 2^(n - 2) n! Sum[(((-1)^(n - k) z^k)/(2^k ((-k + n) k!))) (Cos[(1/4) (k - n) Pi] KelvinBei[k, z] - Sin[(1/4) (k - n) Pi] KelvinBer[k, z]), {k, 0, -1 + n}])/z^n + ((-1)^n/4) Derivative[2, 0][KelvinBer][-n, z] - (1/4) Derivative[2, 0][KelvinBer][n, z]) (\[Nu] - n) + \[Ellipsis] /; (\[Nu] -> n) && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["n", ",", "z"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], " ", RowBox[List["KelvinKei", "[", RowBox[List["n", ",", "z"]], "]"]]]], "-", " ", RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List["n", "-", "2"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List["n", "!"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "k"]], "+", "n"]], ")"]], " ", RowBox[List["k", "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["k", ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "]"]], RowBox[List["KelvinBer", "[", RowBox[List["k", ",", "z"]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], "4"], " ", RowBox[List[SuperscriptBox["KelvinBer", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List[SuperscriptBox["KelvinBer", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n", ",", "z"]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["\[Nu]", "-", "n"]], ")"]]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Nu]", "\[Rule]", "n"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ker </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msub> <mi> ker </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> kei </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> bei </mi> <mi> k </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mi> k </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mtext> </mtext> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> ber </mi> <annotation encoding='Mathematica'> TagBox[&quot;ber&quot;, BesselJ] </annotation> </semantics> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> ber </mi> <annotation encoding='Mathematica'> TagBox[&quot;ber&quot;, BesselJ] </annotation> </semantics> <mi> n </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKer </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> KelvinKer </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> KelvinKei </ci> <ci> n </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <pi /> </apply> </apply> <apply> <ci> KelvinBei </ci> <ci> k </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <pi /> </apply> </apply> <apply> <ci> KelvinBer </ci> <ci> k </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselJ </ci> <ci> ber </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> Subscript </ci> <apply> <ci> BesselJ </ci> <ci> ber </ci> </apply> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> &#957; </ci> <ci> n </ci> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["n", ",", "z"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["KelvinKei", "[", RowBox[List["n", ",", "z"]], "]"]]]], "-", RowBox[List["\[Pi]", " ", SuperscriptBox["2", RowBox[List["n", "-", "2"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], " ", SuperscriptBox["z", "k"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBei", "[", RowBox[List["k", ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List["k", ",", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "k"]], "+", "n"]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[SuperscriptBox["KelvinBer", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", RowBox[List[SuperscriptBox["KelvinBer", TagBox[RowBox[List["(", RowBox[List["2", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n", ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Nu]", "-", "n"]], ")"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Nu]", "\[Rule]", "n"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02