Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKer[nu,z] > Series representations > Generalized power series > Expansions at generic point z==z0





http://functions.wolfram.com/03.20.06.0009.01









  


  










Input Form





KelvinKer[\[Nu], z] \[Proportional] (-2 I Pi Cos[Pi \[Nu]] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)] Floor[(Pi + Arg[Subscript[z, 0]])/(2 Pi)] KelvinBer[-\[Nu], Subscript[z, 0]] + KelvinKer[\[Nu], Subscript[z, 0]] (1/Subscript[z, 0])^(\[Nu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)]) Subscript[z, 0]^(\[Nu] Floor[Arg[z - Subscript[z, 0]]/(2 Pi)])) (1 + O[z - Subscript[z, 0]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", SubscriptBox["z", "0"], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", SubscriptBox["z", "0"]]], "]"]]]], "+", RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", SubscriptBox["z", "0"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", SubscriptBox["z", "0"]], ")"]], RowBox[List["\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SubsuperscriptBox["z", "0", RowBox[List["\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> ker </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> ker </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> ber </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKer </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> KelvinKer </ci> <ci> &#957; </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> &#957; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <ci> &#957; </ci> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> KelvinBer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", SubscriptBox["zz", "0"], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["KelvinBer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", SubscriptBox["zz", "0"]]], "]"]]]], "+", RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", SubscriptBox["zz", "0"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", SubscriptBox["zz", "0"]], ")"]], RowBox[List["\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SubsuperscriptBox["zz", "0", RowBox[List["\[Nu]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02