Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
KelvinKer






Mathematica Notation

Traditional Notation









Bessel-Type Functions > KelvinKer[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > Logarithmic cases





http://functions.wolfram.com/03.20.06.0030.01









  


  










Input Form





KelvinKer[\[Nu], z] == (Pi^2 z^Abs[\[Nu]] Sin[(1/4) Pi (2 \[Nu] + Abs[\[Nu]])] HypergeometricPFQRegularized[{}, {1/2, 1/2 + Abs[\[Nu]]/2, 1 + Abs[\[Nu]]/2}, -(z^4/256)])/2^(2 (1 + Abs[\[Nu]])) + (Pi^2 z^(2 + Abs[\[Nu]]) Cos[(1/4) Pi (2 \[Nu] + Abs[\[Nu]])] HypergeometricPFQRegularized[{}, {3/2, 1 + Abs[\[Nu]]/2, 3/2 + Abs[\[Nu]]/2}, -(z^4/256)])/2^(2 (3 + Abs[\[Nu]])) + ((1/4) Sum[(((E^((I Pi (2 \[Nu] + Abs[\[Nu]]))/4) + (-1)^k/E^((I Pi (2 \[Nu] + Abs[\[Nu]]))/4)) (Abs[\[Nu]] - k - 1)!)/ k!) ((I z^2)/4)^k, {k, 0, Abs[\[Nu]] - 1}])/(z/2)^Abs[\[Nu]] - (1/4) ((I z)/2)^Abs[\[Nu]] E^((I Pi \[Nu])/2) Sum[((E^(-((I Pi Abs[\[Nu]])/4)) + (-1)^k E^((I Pi Abs[\[Nu]])/4))/ (k! (k + Abs[\[Nu]])!)) (2 Log[z/2] - PolyGamma[1 + k] - PolyGamma[1 + k + Abs[\[Nu]]]) ((I z^2)/4)^k, {k, 0, Infinity}] /; Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["Abs", "[", "\[Nu]", "]"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], "]"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["2", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], "]"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], " ", "+", " ", RowBox[List[FractionBox["1", "4"], SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], "4"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], "4"], " "]]]]]]], ")"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", "1"]], ")"]], "!"]], " "]], RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], ")"]], "k"]]]]]]], "-", RowBox[List[FractionBox["1", "4"], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"], ")"]], RowBox[List["Abs", "[", "\[Nu]", "]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "4"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "4"]]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]], "!"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ker </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mrow> <mo> &#10072; </mo> <mi> &#957; </mi> <mo> &#10072; </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mrow> <mo> &#10072; </mo> <mi> &#957; </mi> <mo> &#10072; </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[LeftBracketingBar]&quot;, &quot;\[Nu]&quot;, &quot;\[RightBracketingBar]&quot;]], &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[LeftBracketingBar]&quot;, &quot;\[Nu]&quot;, &quot;\[RightBracketingBar]&quot;]], &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;4&quot;], &quot;256&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mrow> <mo> &#10072; </mo> <mi> &#957; </mi> <mo> &#10072; </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mrow> <mo> &#10072; </mo> <mi> &#957; </mi> <mo> &#10072; </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mn> 256 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;3&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[LeftBracketingBar]&quot;, &quot;\[Nu]&quot;, &quot;\[RightBracketingBar]&quot;]], &quot;2&quot;], &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;\[LeftBracketingBar]&quot;, &quot;\[Nu]&quot;, &quot;\[RightBracketingBar]&quot;]], &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[SuperscriptBox[&quot;z&quot;, &quot;4&quot;], &quot;256&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> &#957; </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> ker </ms> <ms> &#957; </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#63449; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 2 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> + </ms> <ms> 3 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#960; </ms> <ms> 2 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> + </ms> <ms> 2 </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> cos </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <ms> &#960; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#957; </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#62387; </ms> <ms> 0 </ms> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <ms> 3 </ms> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <ms> &#62368; </ms> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 2 </ms> </apply> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 4 </ms> </apply> <ms> 256 </ms> </apply> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 2 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#960; </ms> <ms> 2 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <ms> &#960; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#957; </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#62387; </ms> <ms> 0 </ms> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <ms> 3 </ms> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <ms> &#62368; </ms> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> + </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 4 </ms> </apply> <ms> 256 </ms> </apply> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> <apply> <ci> Rule </ci> <ci> Selectable </ci> <false /> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <ms> &#8520; </ms> <ms> &#960; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#957; </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> &#960; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> &#957; </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> - </ms> <ms> k </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ! </ms> </list> </apply> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> 4 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> &#960; </ms> <ms> &#957; </ms> </list> </apply> <ms> 2 </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> &#8734; </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <ms> &#960; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> <apply> <ci> SuperscriptBox </ci> <ms> &#8519; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <ms> &#8520; </ms> <ms> &#960; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> FractionBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> &#968; </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> &#62979; </ms> <ms> &#957; </ms> <ms> &#62980; </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ! </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8520; </ms> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> 4 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <ms> &#957; </ms> <ms> &#8712; </ms> <apply> <ci> TagBox </ci> <ms> &#8484; </ms> <apply> <ci> Function </ci> <list /> <integers /> </apply> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["Abs", "[", "\[Nu]", "]"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]]], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", RowBox[List["2", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox[RowBox[List["Abs", "[", "\[Nu]", "]"]], "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], "256"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", "2"], ")"]], RowBox[List["-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]], ")"]]]]]]]]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", "1"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"], ")"]], RowBox[List["Abs", "[", "\[Nu]", "]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", FractionBox["z", "2"], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ")"]], "!"]]]]]]]]]]], "/;", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02