|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.20.06.0042.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinKer[\[Nu], z] \[Proportional] (Sqrt[Pi]/(Sqrt[2] Sqrt[-z]))
(((I Sin[(1/8) (Pi (-3 + 4 \[Nu]) + 4 Sqrt[2] z)])/E^(z/Sqrt[2]) +
2 Cos[Pi \[Nu]] E^(z/Sqrt[2]) Cos[(1/8) (Pi + 4 Pi \[Nu] -
4 Sqrt[2] z)]) HypergeometricPFQ[{(1 - 2 \[Nu])/8, (3 - 2 \[Nu])/8,
(5 - 2 \[Nu])/8, (7 - 2 \[Nu])/8, (1 + 2 \[Nu])/8, (3 + 2 \[Nu])/8,
(5 + 2 \[Nu])/8, (7 + 2 \[Nu])/8}, {1/4, 1/2, 3/4}, -(16/z^4)] +
((9 - 40 \[Nu]^2 + 16 \[Nu]^4)/(128 z^2))
((I Cos[(1/8) (Pi (-3 + 4 \[Nu]) + 4 Sqrt[2] z)])/E^(z/Sqrt[2]) -
2 Cos[Pi \[Nu]] E^(z/Sqrt[2]) Sin[(1/8) (Pi + 4 Pi \[Nu] -
4 Sqrt[2] z)]) HypergeometricPFQ[{(5 - 2 \[Nu])/8, (7 - 2 \[Nu])/8,
(9 - 2 \[Nu])/8, (11 - 2 \[Nu])/8, (5 + 2 \[Nu])/8, (7 + 2 \[Nu])/8,
(9 + 2 \[Nu])/8, (11 + 2 \[Nu])/8}, {3/4, 5/4, 3/2}, -(16/z^4)] +
((1 - 4 \[Nu]^2)/(8 z))
(((-I) Sin[(1/8) (Pi (-1 + 4 \[Nu]) + 4 Sqrt[2] z)])/E^(z/Sqrt[2]) +
2 Cos[Pi \[Nu]] E^(z/Sqrt[2]) Cos[(1/8) (Pi (3 + 4 \[Nu]) -
4 Sqrt[2] z)]) HypergeometricPFQ[{(3 - 2 \[Nu])/8, (5 - 2 \[Nu])/8,
(7 - 2 \[Nu])/8, (9 - 2 \[Nu])/8, (3 + 2 \[Nu])/8, (5 + 2 \[Nu])/8,
(7 + 2 \[Nu])/8, (9 + 2 \[Nu])/8}, {1/2, 3/4, 5/4}, -(16/z^4)] +
((225 - 1036 \[Nu]^2 + 560 \[Nu]^4 - 64 \[Nu]^6)/(3072 z^3))
(((-I) Cos[(1/8) (Pi (-1 + 4 \[Nu]) + 4 Sqrt[2] z)])/E^(z/Sqrt[2]) -
2 Cos[Pi \[Nu]] E^(z/Sqrt[2]) Sin[(1/8) (Pi (3 + 4 \[Nu]) -
4 Sqrt[2] z)]) HypergeometricPFQ[{(7 - 2 \[Nu])/8, (9 - 2 \[Nu])/8,
(11 - 2 \[Nu])/8, (13 - 2 \[Nu])/8, (7 + 2 \[Nu])/8, (9 + 2 \[Nu])/8,
(11 + 2 \[Nu])/8, (13 + 2 \[Nu])/8}, {5/4, 3/2, 7/4}, -(16/z^4)]) /;
(z -> -Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[" ", SqrtBox["\[Pi]"], " "]], RowBox[List[SqrtBox["2"], SqrtBox[RowBox[List["-", "z"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["\[Pi]", "+", RowBox[List["4", " ", "\[Pi]", " ", "\[Nu]"]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["1", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "2"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["\[Pi]", "+", RowBox[List["4", " ", "\[Pi]", " ", "\[Nu]"]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], RowBox[List["8", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["225", "-", RowBox[List["1036", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["560", " ", SuperscriptBox["\[Nu]", "4"]]], "-", RowBox[List["64", " ", SuperscriptBox["\[Nu]", "6"]]]]], RowBox[List["3072", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["7", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["13", "-", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["7", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["9", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["11", "+", RowBox[List["2", "\[Nu]"]]]], "8"], ",", FractionBox[RowBox[List["13", "+", RowBox[List["2", "\[Nu]"]]]], "8"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "4"], ",", FractionBox["3", "2"], ",", FractionBox["7", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "\[Infinity]"]]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ker </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <msqrt> <mi> π </mi> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "8"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "5"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "7"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "8"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "3"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "5"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "7"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "9"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["5", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mrow> <mn> 128 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "8"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "5"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "7"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "9"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "11"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["5", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 64 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 560 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1036 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 225 </mn> </mrow> <mrow> <mn> 3072 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mi> z </mi> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 8 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 13 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 16 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "8"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["13", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "7"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "9"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "11"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "13"]], ")"]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["7", "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKer </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <ci> ν </ci> </apply> <pi /> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <imaginaryi /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <ci> ν </ci> </apply> <pi /> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 11 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 11 </cn> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -64 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 560 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1036 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 225 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3072 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 11 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <cn type='integer'> 13 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 13 </cn> </apply> </apply> </list> <list> <cn type='rational'> 5 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 7 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["\[Pi]", "+", RowBox[List["4", " ", "\[Pi]", " ", "\[Nu]"]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "2"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["9", "-", RowBox[List["40", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["16", " ", SuperscriptBox["\[Nu]", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["\[Pi]", "+", RowBox[List["4", " ", "\[Pi]", " ", "\[Nu]"]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "4"], ",", FractionBox["5", "4"], ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], RowBox[List["128", " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "4"], ",", FractionBox["5", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], RowBox[List["8", " ", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["225", "-", RowBox[List["1036", " ", SuperscriptBox["\[Nu]", "2"]]], "+", RowBox[List["560", " ", SuperscriptBox["\[Nu]", "4"]]], "-", RowBox[List["64", " ", SuperscriptBox["\[Nu]", "6"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox["z", SqrtBox["2"]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "+", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox["z", SqrtBox["2"]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["4", " ", "\[Nu]"]]]], ")"]]]], "-", RowBox[List["4", " ", SqrtBox["2"], " ", "z"]]]], ")"]]]], "]"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["13", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "4"], ",", FractionBox["3", "2"], ",", FractionBox["7", "4"]]], "}"]], ",", RowBox[List["-", FractionBox["16", SuperscriptBox["z", "4"]]]]]], "]"]]]], RowBox[List["3072", " ", SuperscriptBox["z", "3"]]]]]], ")"]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", "z"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "\[Infinity]"]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|