|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.20.06.0054.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinKer[\[Nu], z] \[Proportional]
Piecewise[{{((Sqrt[Pi] (-1)^(1/8))/(2 Sqrt[2 z]))
(E^((-1)^(3/4) z + (I Pi \[Nu])/2) - (-1)^(3/4)
E^((-(-1)^(1/4)) z + (3 I Pi \[Nu])/2)), Arg[z] <= Pi/4},
{((Sqrt[Pi] (-1)^(1/8))/(2 Sqrt[2 z]))
(2 (-1)^(1/4) E^((-1)^(1/4) z + (I Pi \[Nu])/2) -
(-1)^(3/4) E^((-(-1)^(1/4)) z + (3 I Pi \[Nu])/2) +
E^((-1)^(3/4) z + (I Pi \[Nu])/2)), Inequality[Pi/4, Less, Arg[z],
LessEqual, (3 Pi)/4]}}, ((Sqrt[Pi] (-1)^(1/8))/(2 Sqrt[2 z]))
(2 (-1)^(1/4) E^((-1)^(1/4) z + (I Pi \[Nu])/2) +
E^((-1)^(3/4) z + (I Pi \[Nu])/2) - (-1)^(3/4)
E^((-(-1)^(1/4)) z + (3 I Pi \[Nu])/2) +
2 I E^((-(-1)^(3/4)) z + (3 I Pi \[Nu])/2))] /;
(Abs[z] -> Infinity) && Element[\[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", "z"]]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]]]], ")"]]]], ",", RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", "z"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], ")"]]]], ",", RowBox[List[FractionBox["\[Pi]", "4"], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox[RowBox[List["3", "\[Pi]"]], "4"]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", "z"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]]]], ")"]]]]]], " ", "]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ker </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mo>  </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> < </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> ν </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> KelvinKer </ci> <ci> ν </ci> <ci> z </ci> </apply> <piecewise> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <leq /> <apply> <arg /> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </piece> <otherwise> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </otherwise> </piecewise> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> ν </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "z"]]]]]], RowBox[List[RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "4"]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "z"]]]]]], RowBox[List[FractionBox["\[Pi]", "4"], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox[RowBox[List["3", " ", "\[Pi]"]], "4"]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["2", " ", "z"]]]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|