|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.20.13.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g[z]^4 Derivative[1][g][z]^3 Derivative[4][w][z] +
2 g[z]^3 Derivative[1][g][z]^2 (Derivative[1][g][z]^2 -
3 g[z] Derivative[2][g][z]) Derivative[3][w][z] -
g[z]^2 Derivative[1][g][z] ((1 + 2 \[Nu]^2) Derivative[1][g][z]^4 +
6 g[z] Derivative[1][g][z]^2 Derivative[2][g][z] -
15 g[z]^2 Derivative[2][g][z]^2 + 4 g[z]^2 Derivative[1][g][z]
Derivative[3][g][z]) Derivative[2][w][z] +
g[z] ((1 + 2 \[Nu]^2) Derivative[1][g][z]^6 + (1 + 2 \[Nu]^2) g[z]
Derivative[1][g][z]^4 Derivative[2][g][z] -
15 g[z]^3 Derivative[2][g][z]^3 - 2 g[z]^2 Derivative[1][g][z]^3
Derivative[3][g][z] + 10 g[z]^3 Derivative[1][g][z] Derivative[2][g][z]
Derivative[3][g][z] + g[z]^2 Derivative[1][g][z]^2
(6 Derivative[2][g][z]^2 - g[z] Derivative[4][g][z]))
Derivative[1][w][z] + (-4 \[Nu]^2 + \[Nu]^4 + g[z]^4)
Derivative[1][g][z]^7 w[z] == 0 /;
w[z] == Subscript[c, 1] KelvinBer[\[Nu], g[z]] +
Subscript[c, 2] KelvinBei[\[Nu], g[z]] + Subscript[c, 3]
KelvinKer[\[Nu], g[z]] + Subscript[c, 4] KelvinKei[\[Nu], g[z]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", " ", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", " ", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["\[Nu]", "2"]]], "+", SuperscriptBox["\[Nu]", "4"], "+", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "7"], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ν </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> ν </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 7 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <msub> <mi> ber </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <msub> <mi> bei </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mrow> <msub> <mi> ker </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <mrow> <msub> <mi> kei </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mrow> <mi> g </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> ν </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> ν </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> KelvinBer </ci> <ci> ν </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> KelvinBei </ci> <ci> ν </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> KelvinKer </ci> <ci> ν </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> KelvinKei </ci> <ci> ν </ci> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["\[Nu]_", "2"]]], "+", SuperscriptBox["\[Nu]_", "4"], "+", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "7"], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|