| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.20.13.0003.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    g[z]^4 Derivative[1][g][z]^3 Derivative[4][w][z] + 
   2 g[z]^3 Derivative[1][g][z]^2 (Derivative[1][g][z]^2 - 
     3 g[z] Derivative[2][g][z]) Derivative[3][w][z] - 
   g[z]^2 Derivative[1][g][z] ((1 + 2 \[Nu]^2) Derivative[1][g][z]^4 + 
     6 g[z] Derivative[1][g][z]^2 Derivative[2][g][z] - 
     15 g[z]^2 Derivative[2][g][z]^2 + 4 g[z]^2 Derivative[1][g][z] 
      Derivative[3][g][z]) Derivative[2][w][z] + 
   g[z] ((1 + 2 \[Nu]^2) Derivative[1][g][z]^6 + (1 + 2 \[Nu]^2) g[z] 
      Derivative[1][g][z]^4 Derivative[2][g][z] - 
     15 g[z]^3 Derivative[2][g][z]^3 - 2 g[z]^2 Derivative[1][g][z]^3 
      Derivative[3][g][z] + 10 g[z]^3 Derivative[1][g][z] Derivative[2][g][z] 
      Derivative[3][g][z] + g[z]^2 Derivative[1][g][z]^2 
      (6 Derivative[2][g][z]^2 - g[z] Derivative[4][g][z])) 
    Derivative[1][w][z] + (-4 \[Nu]^2 + \[Nu]^4 + g[z]^4) 
    Derivative[1][g][z]^7 w[z] == 0 /; 
 w[z] == Subscript[c, 1] KelvinBer[\[Nu], g[z]] + 
   Subscript[c, 2] KelvinBei[\[Nu], g[z]] + Subscript[c, 3] 
    KelvinKer[\[Nu], g[z]] + Subscript[c, 4] KelvinKei[\[Nu], g[z]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "+", RowBox[List["2", "  ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", " ", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", " ", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["\[Nu]", "2"]]], "+", SuperscriptBox["\[Nu]", "4"], "+", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "4"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "7"], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", "  ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <mtext>    </mtext>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 4 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mtext>    </mtext>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 4 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 10 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <semantics>  <mrow>  <mo> ( </mo>  <mn> 3 </mn>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation>  </semantics>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mi> ′′ </mi>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ν </mi>  <mn> 4 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <msup>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msup>  <mi> g </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 7 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mtext>   </mtext>  <mo>  </mo>  <mn> 0 </mn>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <msub>  <mi> c </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ber </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> bei </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> ker </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msub>  <mi> c </mi>  <mn> 4 </mn>  </msub>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> kei </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> g </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 4 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 4 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 10 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 3 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15 </cn>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <cn type='integer'> 2 </cn>  </degree>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 7 </cn>  </apply>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> KelvinBer </ci>  <ci> ν </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> KelvinBei </ci>  <ci> ν </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> KelvinKer </ci>  <ci> ν </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <ci> KelvinKei </ci>  <ci> ν </ci>  <apply>  <ci> g </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "+", RowBox[List["6", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["\[Nu]_", "2"]]]]], ")"]], " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List["15", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "3"], " ", RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List[RowBox[List["g", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["g", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["\[Nu]_", "2"]]], "+", SuperscriptBox["\[Nu]_", "4"], "+", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "4"]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "7"], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["KelvinBer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["KelvinBei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "3"], " ", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "4"], " ", RowBox[List["KelvinKei", "[", RowBox[List["\[Nu]", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  |