|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.20.21.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(t^(\[Alpha] - 1) KelvinKer[\[Nu], t])/E^(p t),
{t, 0, Infinity}] == 2^(-3 - \[Nu]) p^(-\[Alpha] - \[Nu])
(Gamma[-1 - \[Nu]] Gamma[\[Alpha] + \[Nu]]
(-4 (1 + \[Nu]) Cos[(Pi \[Nu])/4] HypergeometricPFQ[
{\[Alpha]/4 + \[Nu]/4, 1/4 + \[Alpha]/4 + \[Nu]/4,
1/2 + \[Alpha]/4 + \[Nu]/4, 3/4 + \[Alpha]/4 + \[Nu]/4},
{1/2, 1/2 + \[Nu]/2, 1 + \[Nu]/2}, -(1/p^4)] -
(1/p^2) (\[Alpha] + \[Nu]) (1 + \[Alpha] + \[Nu]) Sin[(Pi \[Nu])/4]
HypergeometricPFQ[{1/2 + \[Alpha]/4 + \[Nu]/4, 3/4 + \[Alpha]/4 +
\[Nu]/4, 1 + \[Alpha]/4 + \[Nu]/4, 5/4 + \[Alpha]/4 + \[Nu]/4},
{3/2, 1 + \[Nu]/2, 3/2 + \[Nu]/2}, -(1/p^4)]) +
4^\[Nu] p^(2 \[Nu]) Gamma[\[Alpha] - \[Nu]] Gamma[-1 + \[Nu]]
(4 (-1 + \[Nu]) Cos[(3 Pi \[Nu])/4] HypergeometricPFQ[
{\[Alpha]/4 - \[Nu]/4, 1/4 + \[Alpha]/4 - \[Nu]/4,
1/2 + \[Alpha]/4 - \[Nu]/4, 3/4 + \[Alpha]/4 - \[Nu]/4},
{1/2, 1/2 - \[Nu]/2, 1 - \[Nu]/2}, -(1/p^4)] -
(1/p^2) (\[Alpha] - \[Nu]) (1 + \[Alpha] - \[Nu]) Sin[(3 Pi \[Nu])/4]
HypergeometricPFQ[{1/2 + \[Alpha]/4 - \[Nu]/4, 3/4 + \[Alpha]/4 -
\[Nu]/4, 1 + \[Alpha]/4 - \[Nu]/4, 5/4 + \[Alpha]/4 - \[Nu]/4},
{3/2, 1 - \[Nu]/2, 3/2 - \[Nu]/2}, -(1/p^4)])) /;
Re[\[Alpha] + \[Nu]] > 0 && Re[\[Alpha] - \[Nu]] > 0 &&
Re[p] > -(1/Sqrt[2]) && !Element[\[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p"]], " ", "t"]]], RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "t"]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["p", "2"]], RowBox[List["(", RowBox[List["\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]], RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["4", "\[Nu]"], " ", SuperscriptBox["p", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["p", "2"]], RowBox[List["(", RowBox[List["\[Alpha]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "-", "\[Nu]"]], ")"]], RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]]]], " ", ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", "\[Nu]"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "-", "\[Nu]"]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", RowBox[List["-", FractionBox["1", SqrtBox["2"]]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> ker </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo>  </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 4 </mn> <mi> ν </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> p </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"], "+", FractionBox["1", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["1", "2"], "-", FractionBox["\[Nu]", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"], "+", FractionBox["3", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[Nu]", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mi> p </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> p </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["1", "2"], "-", FractionBox["\[Nu]", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"], "+", FractionBox["3", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"], "+", FractionBox["5", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["3", "2"], "-", FractionBox["\[Nu]", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> p </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", FractionBox["1", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", FractionBox["3", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mi> p </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> p </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", FractionBox["3", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"], "+", FractionBox["5", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> α </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> p </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> ν </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> t </ci> </apply> </apply> <apply> <ci> KelvinKer </ci> <ci> ν </ci> <ci> t </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> ν </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <apply> <plus /> <ci> α </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> p </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> ν </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "p_"]], " ", "t_"]]], " ", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "t_"]], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "3"]], "-", "\[Nu]"]]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Alpha]", "4"], "+", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], SuperscriptBox["p", "2"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["4", "\[Nu]"], " ", SuperscriptBox["p", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "-", "\[Nu]"]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[Nu]"]], "4"], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["3", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]], ",", RowBox[List[FractionBox["5", "4"], "+", FractionBox["\[Alpha]", "4"], "-", FractionBox["\[Nu]", "4"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "-", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["p", "4"]]]]]], "]"]]]], SuperscriptBox["p", "2"]]]], ")"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", "\[Nu]"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "-", "\[Nu]"]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "p", "]"]], ">", RowBox[List["-", FractionBox["1", SqrtBox["2"]]]]]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|