|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.20.26.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KelvinKer[\[Nu], z] == (2^(-2 - \[Nu]) E^((I Pi \[Nu])/4) Pi Csc[Pi \[Nu]]
(-z^(2 \[Nu]) + E^((I Pi \[Nu])/2) ((-1)^(3/4) z)^(2 \[Nu]))
Hypergeometric0F1Regularized[1 + \[Nu], -((I z^2)/4)])/z^\[Nu] -
(2^(-2 - \[Nu]) Pi Csc[Pi \[Nu]] (E^((I Pi \[Nu])/2) z^(2 \[Nu]) -
((-1)^(1/4) z)^(2 \[Nu])) Hypergeometric0F1Regularized[1 + \[Nu],
(I z^2)/4])/(E^((3 I Pi \[Nu])/4) z^\[Nu]) +
(2^(-1 + \[Nu]) E^((-(-1)^(1/4)) z - (3 I Pi \[Nu])/4) Sqrt[Pi]
((-1)^(1/4) z)^(2 \[Nu]) HypergeometricU[1/2 + \[Nu], 1 + 2 \[Nu],
2 (-1)^(1/4) z])/z^\[Nu] +
(2^(-1 + \[Nu]) E^((-(-1)^(3/4)) z + (3 I Pi \[Nu])/4) Sqrt[Pi]
((-1)^(3/4) z)^(2 \[Nu]) HypergeometricU[1/2 + \[Nu], 1 + 2 \[Nu],
2 (-1)^(3/4) z])/z^\[Nu] /; !Element[\[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]]]], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]]]], ")"]], RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "]"]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ker </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> </mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["\[Nu]", "+", "1"]], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> </mrow> <mo> - </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["\[Nu]", "+", "1"]], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"]]], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> U </mi> <annotation encoding='Mathematica'> TagBox["U", HypergeometricU] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> ν </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> KelvinKer </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <pi /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <pi /> <apply> <csc /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> HypergeometricU </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <imaginaryi /> <pi /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> </apply> <apply> <ci> HypergeometricU </ci> <apply> <plus /> <ci> ν </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> ν </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["KelvinKer", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], ")"]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], ")"]]]]], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "2"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]]]], "-", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]]]], ")"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", "2"]]], "4"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", "z"]], "-", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "z"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], " ", "z"]], "+", FractionBox[RowBox[List["3", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]], "4"]]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]], ")"]], RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List["HypergeometricU", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "z"]]]], "]"]]]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|