|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.21.06.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalBesselJ[\[Nu], z] \[Proportional] SphericalBesselJ[-n, z] -
(((-1)^n 2^(1 - n))/(z^n (n - 1)!))
(2 z Sum[(-4)^k z^(2 k) Binomial[-1 + n, 1 + 2 k] (-3 - 2 k + 2 n)!
(CosIntegral[2 z] Sin[z] + (PolyGamma[3/2 + k] -
PolyGamma[3/2 + k - n]) Sin[z] - Cos[z] SinIntegral[2 z]),
{k, 0, -1 + Floor[n/2]}] + Sum[(-4)^k z^(2 k) Binomial[-1 + n, 2 k]
(-2 - 2 k + 2 n)! (Cos[z] CosIntegral[2 z] +
Cos[z] (PolyGamma[1/2 + k] - PolyGamma[3/2 + k - n]) +
Sin[z] SinIntegral[2 z]), {k, 0, Floor[(n - 1)/2]}]) (\[Nu] + n) +
\[Ellipsis] /; (\[Nu] -> -n) && Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["1", "-", "n"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["CosIntegral", "[", RowBox[List["2", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "+", "k", "-", "n"]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "+", "k", "-", "n"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]]]], ")"]], RowBox[List["(", RowBox[List["\[Nu]", "+", "n"]], ")"]]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Nu]", "\[Rule]", RowBox[List["-", "n"]]]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> j </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <msub> <mi> j </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Ci </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Si </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Ci </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Si </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> SphericalBesselJ </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> SphericalBesselJ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <ci> z </ci> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <cos /> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <sin /> <ci> z </ci> </apply> <apply> <ci> SinIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> CosIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <ci> z </ci> </apply> <apply> <ci> SinIntegral </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <ci> ν </ci> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["1", "-", "n"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["CosIntegral", "[", RowBox[List["2", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "+", "k", "-", "n"]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "+", "k", "-", "n"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Nu]", "+", "n"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Nu]", "\[Rule]", RowBox[List["-", "n"]]]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|