|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.21.06.0073.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SphericalBesselJ[\[Nu], z] == Sqrt[Pi/2] z^\[Nu] (z^2)^(-(1/4) - \[Nu]/2)
Sum[Residue[Gamma[s + 1/4 + \[Nu]/2]/((z^2/4)^s
Gamma[(1/4) (5 - 4 s + 2 \[Nu])]), {s, -(1/4) - j - \[Nu]/2}],
{j, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", SuperscriptBox["z", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", FractionBox["\[Nu]", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", RowBox[List["s", "+", FractionBox["1", "4"], "+", FractionBox["\[Nu]", "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["4", " ", "s"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", "j", "-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> j </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <msqrt> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalBesselJ </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> s </ci> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", SuperscriptBox["z", "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "2"], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", FractionBox["\[Nu]", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], RowBox[List["-", "s"]]], " ", RowBox[List["Gamma", "[", RowBox[List["s", "+", FractionBox["1", "4"], "+", FractionBox["\[Nu]", "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["4", " ", "s"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "-", "j", "-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|