Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SphericalBesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > SphericalBesselJ[nu,z] > Integral representations > Contour integral representations





http://functions.wolfram.com/03.21.07.0008.01









  


  










Input Form





SphericalBesselJ[\[Nu], x] == (1/(4 Pi I)) Sqrt[Pi/2] Integrate[(Gamma[s]/Gamma[3/2 - s + \[Nu]]) (x/2)^(\[Nu] - 2 s), {s, (\[Gamma] - I) Infinity, \[Gamma] + DirectedInfinity[I]}] /; x > 0 && 0 < \[Gamma] < 1 + Re[\[Nu]]/2










Standard Form





Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["1", " "]], RowBox[List["4", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], SqrtBox[FractionBox["\[Pi]", "2"]], RowBox[List[SubsuperscriptBox["\[Integral]", TagBox[RowBox[List[TagBox[RowBox[List["\[Gamma]", "-", "\[ImaginaryI]"]], "DirectedInfinityCoefficient", Rule[Editable, True]], " ", "\[Infinity]"]], DirectedInfinity, Rule[Editable, False]], RowBox[List["\[Gamma]", "+", TagBox[RowBox[List[TagBox["\[ImaginaryI]", "DirectedInfinityCoefficient", Rule[Editable, True]], " ", "\[Infinity]"]], DirectedInfinity, Rule[Editable, False]]]]], RowBox[List[FractionBox[RowBox[List["Gamma", "[", "s", "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "s", "+", "\[Nu]"]], "]"]]], SuperscriptBox[RowBox[List["(", FractionBox["x", "2"], ")"]], RowBox[List["\[Nu]", "-", RowBox[List["2", " ", "s"]]]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]], "/;", RowBox[List[RowBox[List["x", ">", "0"]], "&&", RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["1", "+", FractionBox[RowBox[List["Re", "[", "\[Nu]", "]"]], "2"], " "]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> j </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#947; </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> <mrow> <mi> &#947; </mi> <mo> + </mo> <semantics> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[TagBox[&quot;\[ImaginaryI]&quot;, &quot;DirectedInfinityCoefficient&quot;, Rule[Editable, True]], &quot; &quot;, &quot;\[Infinity]&quot;]], DirectedInfinity, Rule[Editable, False]] </annotation> </semantics> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> x </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> &#957; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> &#947; </mi> <mo> &lt; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SphericalBesselJ </ci> <ci> &#957; </ci> <ci> x </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <int /> <bvar> <ci> s </ci> </bvar> <lowlimit> <apply> <times /> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <infinity /> </apply> </lowlimit> <uplimit> <apply> <plus /> <ci> &#947; </ci> <apply> <ci> DirectedInfinity </ci> <cn type='complex-cartesian'> 0 <sep /> 1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> &#947; </ci> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> &#957; </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", "x_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List[RowBox[List["(", RowBox[List["\[Gamma]", "-", "\[ImaginaryI]"]], ")"]], " ", "\[Infinity]"]], RowBox[List["\[Gamma]", "+", TagBox[RowBox[List[TagBox["\[ImaginaryI]", "DirectedInfinityCoefficient", Rule[Editable, True]], " ", "\[Infinity]"]], DirectedInfinity, Rule[Editable, False]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["x", "2"], ")"]], RowBox[List["\[Nu]", "-", RowBox[List["2", " ", "s"]]]]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "s", "+", "\[Nu]"]], "]"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]], RowBox[List["4", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], "/;", RowBox[List[RowBox[List["x", ">", "0"]], "&&", RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["1", "+", FractionBox[RowBox[List["Re", "[", "\[Nu]", "]"]], "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02