|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.21.11.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[E^(I k q) SphericalBesselJ[k - 1/2, z], {k, -Infinity, Infinity}] ==
Sqrt[Pi/2] (E^(I z Sin[q])/Sqrt[z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "k", " ", "q"]]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List[RowBox[List["k", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]]]]]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z", " ", RowBox[List["Sin", "[", "q", "]"]]]]], " "]], SqrtBox["z"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> ∞ </mi> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> j </mi> <mrow> <mi> k </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mrow> <msqrt> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </msqrt> <mo> ⁢ </mo> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> </mrow> </msup> <msqrt> <mi> z </mi> </msqrt> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> </apply> <apply> <ci> SphericalBesselJ </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <sin /> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "k_", " ", "q_"]]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List[RowBox[List["k_", "-", FractionBox["1", "2"]]], ",", "z_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[FractionBox["\[Pi]", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z", " ", RowBox[List["Sin", "[", "q", "]"]]]]]]], SqrtBox["z"]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|