Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SphericalBesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > SphericalBesselJ[nu,z] > Transformations > Multiple arguments





http://functions.wolfram.com/03.21.16.0008.01









  


  










Input Form





SphericalBesselJ[\[Nu], Subscript[z, 1] Subscript[z, 2]] == ((Sqrt[Pi] Subscript[z, 1]^(-(1/2) - \[Nu]) Sqrt[Subscript[z, 2]])/ Sqrt[Subscript[z, 1] Subscript[z, 2]]) Sum[((Subscript[z, 1]^2 - 1)^k/(Sqrt[Pi] k!)) SphericalBesselJ[-k + \[Nu], Subscript[z, 2]] (Subscript[z, 2]/2)^k, {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List[SubscriptBox["z", "1"], " ", SubscriptBox["z", "2"]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", SubsuperscriptBox["z", "1", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]]], " ", SqrtBox[SubscriptBox["z", "2"]]]], SqrtBox[RowBox[List[SubscriptBox["z", "1"], " ", SubscriptBox["z", "2"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["z", "1", "2"], "-", "1"]], ")"]], "k"]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["k", "!"]]]]], RowBox[List["SphericalBesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "k"]], "+", "\[Nu]"]], ",", SubscriptBox["z", "2"]]], "]"]], SuperscriptBox[RowBox[List["(", FractionBox[SubscriptBox["z", "2"], "2"], ")"]], "k"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> j </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> &#8290; </mo> <msqrt> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </msqrt> </mrow> <msqrt> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mtext> </mtext> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> j </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> SphericalBesselJ </ci> <ci> &#957; </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SphericalBesselJ </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List[SubscriptBox["z_", "1"], " ", SubscriptBox["z_", "2"]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", SubsuperscriptBox["zz", "1", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "\[Nu]"]]], " ", SqrtBox[SubscriptBox["zz", "2"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SubsuperscriptBox["zz", "1", "2"], "-", "1"]], ")"]], "k"], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "k"]], "+", "\[Nu]"]], ",", SubscriptBox["zz", "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SubscriptBox["zz", "2"], "2"], ")"]], "k"]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["k", "!"]]]]]]]]], SqrtBox[RowBox[List[SubscriptBox["zz", "1"], " ", SubscriptBox["zz", "2"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02