| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/03.21.21.0035.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[z^(\[Alpha] - 1) Cos[b + a z] SphericalBesselJ[\[Nu], a z], z] == 
 ((2^(-1 - \[Nu]) Sqrt[Pi] z^\[Alpha] (a z)^\[Nu])/
   ((\[Alpha] + \[Alpha]^2 + \[Nu] + 2 \[Alpha] \[Nu] + \[Nu]^2) 
    Gamma[3/2 + \[Nu]])) ((1 + \[Alpha] + \[Nu]) Cos[b] 
    HypergeometricPFQ[{1/2 + \[Nu]/2, 1 + \[Nu]/2, \[Alpha]/2 + \[Nu]/2}, 
     {1/2, 1 + \[Alpha]/2 + \[Nu]/2, 1 + \[Nu], 3/2 + \[Nu]}, (-a^2) z^2] - 
   a z (\[Alpha] + \[Nu]) Sin[b] HypergeometricPFQ[
     {1 + \[Nu]/2, 3/2 + \[Nu]/2, 1/2 + \[Alpha]/2 + \[Nu]/2}, 
     {3/2, 3/2 + \[Alpha]/2 + \[Nu]/2, 3/2 + \[Nu], 2 + \[Nu]}, (-a^2) z^2]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], "\[Nu]"], " "]], RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "+", SuperscriptBox["\[Alpha]", "2"], "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Alpha]", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", "b", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "-", RowBox[List["a", " ", "z", " ", RowBox[List["(", RowBox[List["\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Sin", "[", "b", "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mi> α </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> j </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> α </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ν </mi>  </msup>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> α </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ν </mi>  <mo> ⁢ </mo>  <mi> α </mi>  </mrow>  <mo> + </mo>  <mi> α </mi>  <mo> + </mo>  <msup>  <mi> ν </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> α </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> b </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 4 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mi> α </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mfrac>  <mi> α </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> α </mi>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> b </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 4 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mfrac>  <mi> α </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mfrac>  <mi> α </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mi> ν </mi>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "3"], SubscriptBox["F", "4"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Nu]", "2"], "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"], "+", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"], "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["\[Nu]", "+", "2"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> α </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <cos />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> SphericalBesselJ </ci>  <ci> ν </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> α </ci>  </apply>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  <ci> ν </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> α </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> ν </ci>  <ci> α </ci>  </apply>  <ci> α </ci>  <apply>  <power />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> ν </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> ν </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> α </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <cos />  <ci> b </ci>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <plus />  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> α </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> α </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <ci> ν </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </list>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  <apply>  <plus />  <ci> α </ci>  <ci> ν </ci>  </apply>  <apply>  <sin />  <ci> b </ci>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <plus />  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> α </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </list>  <list>  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> α </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <ci> ν </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> ν </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Cos", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]], " ", RowBox[List["SphericalBesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], "\[Nu]"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Cos", "[", "b", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "-", RowBox[List["a", " ", "z", " ", RowBox[List["(", RowBox[List["\[Alpha]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["Sin", "[", "b", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[FractionBox["3", "2"], "+", FractionBox["\[Alpha]", "2"], "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "+", SuperscriptBox["\[Alpha]", "2"], "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Alpha]", " ", "\[Nu]"]], "+", SuperscriptBox["\[Nu]", "2"]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "\[Nu]"]], "]"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |